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We dedicate this Letter to the memory of
Raju Raghavan who has made fundamental
contributions in the area of neutrino
physics, and who passed away while we
were writing this Letter

We follow up on the analysis of Mecozzi and Bellini (arXiv:1110.1253v1) where they showed, in principle,
the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result.
We refine the analysis by introducing wave packets for the superposition of energy eigenstates and
discuss the implications of their results with realistic values for the mixing and mass parameters in a
full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of
neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the
number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-
work.

© 2012 Elsevier B.V.

1. Introduction

The recent announcement of the OPERA result [1] indicating possible superluminal propagation of neutrinos has excited considerable
interest. Various aspects of the experiment, the analysis of the data and their interpretation, must be subjected to a thorough examina-
tion since the result has important repercussions on fundamental physics. Furthermore, independent confirmation or refutation by other
experiments is absolutely essential.

If the result stands, one must first see whether it can be understood within the usual framework of physics before giving up cherished
notions such as Lorentz invariance. In fact, this is possible, in principle, as was shown by Mecozzi and Bellini [2]. By considering the
interference between the different mass eigenstates of the neutrinos they showed that superluminal propagation is possible. We extend
their analysis by explicitly including the effect of the finite width of wave packets and provide a numerical estimate of the effect for
realistic neutrino parameters with three generation mixing and matter effects taken into account.

Our numbers indicate that there is a very narrow region in the allowed parameter space with three neutrino flavour mixing in
which superluminal propagation is possible in principle. However, the survival probability for neutrinos with superluminal velocities
is almost vanishing rendering them unobservable in practice. Furthermore, this depends crucially on the ratio of the distance of propa-
gation and the energy of the neutrinos. At distances and energies corresponding to the OPERA experiment, superluminal propagation is
not possible with the present limits imposed by the neutrino parameter space. If the OPERA result is confirmed it would require new
physics. Therefore, we would like to stress the importance of further studies along the present lines since the OPERA experiment has
opened up a new window on neutrino physics, which may be called neutrino optics and which should be pursued by future experi-
ments.

In Section 2 we outline the group velocity calculation in the wave packet formalism. In the context of neutrino oscillation, this for-
malism has been discussed in detail in Ref. [3]. We derive results for short and very long base-line propagation of neutrinos, based on
which we present a realistic numerical analysis in the framework of 3 neutrino mixing in Section 3. Other issues related to group velocity
measurements will be discussed in Section 4 while Section 5 concludes the Letter with some remarks on the implications of OPERA-type
experiments in the future.
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2. Calculation of the group velocity

The neutrino flavour states |να〉, α = e,μ, τ are related to mass eigenstates |νi〉, i = 1,2,3 by

|να〉 =
∑

i

Uαi|νi〉, (1)

where U is a unitary matrix. For a neutrino that starts as a flavour state α at t = 0, the state vector at time t is∣∣ψ(t)
〉 = N

∫
dp

∑
i

Uαie
ipx−iEite−(p−p0)2/a2 |νi〉, (2)

where we have superposed the three energy eigenstates with the same momentum p and then superposed different p with an amplitude
of Gaussian form e−(p−p0)2/a2

to form a wave packet. We have set h̄ = c = 1. The normalisation constant is determined by the condition
〈ψ(t)|ψ(t)〉 = 1.

The probability amplitude for detecting |νβ〉 at time t is

Aβα = 〈
νβ

∣∣ψ(t)
〉 = N

∫
dp

∑
i

Uαi U
∗
β ie

ipx−iEite−(p−p0)2/a2
(3)

= N

∫
dp

∑
i

Cβα
i eipx−iEite−(p−p0)2/a2

, (4)

where we have used

〈νβ |νi〉 = U∗
β i, Cβα

i = U∗
β i Uαi .

We expand the energy E around the peak p0 of the Gaussian and keep up to the quadratic terms (assuming the width of the wave packet
in momentum space to be small enough):

E ≈ E0 + dE

dp

∣∣∣∣
p0

(p − p0) + 1

2

d2 E

dp2

∣∣∣∣
p0

(p − p0)
2 + · · · . (5)

With this approximation, the p-integration in Eq. (4) can be done to yield the result (absorbing the constant factors into N):

Aβα = N
∑

i

Cβα
i eip0x−i Ẽ0i te−(x−xi

0(t))2a2/4, Ẽ0i = E0i + a2

4

d2 Ei

dp2

∣∣∣∣
p0

, (6)

where xi
0(t) = dEi/dp|p0t . Thus we have a superposition of 3 Gaussians in x-space with their centres travelling with 3 separate group

velocities,

vi ≡ dxi
0(t)

dt
= dEi

dp

∣∣∣∣
p0

. (7)

However, if the x-space Gaussians are broad, that is, if a is small, then these 3 Gaussians will interfere. To study this, let us define

〈x〉βα =
∫

x|Aβα |2 dx∫ |Aβα |2 dx
. (8)

The integrations are straightforward and the result is

〈x〉βα =
∑

i |Cβα
i |2 vit + ∑

i> j Re(Cβα
i Cβα∗

j (vi + v j)te−i�Eijt)e−(vi−v j)
2t2a2/8∑

i |Cβα
i |2 + 2

∑
i> j Re(Cβα

i Cβα∗
j e−i�Eijt)e−(vi−v j)

2t2a2/8
, (9)

where

�Eij = E0i − E0 j + a2

4

d2(Ei − E j)

dp2

∣∣∣∣
p0

.

Defining the overall-group velocity of neutrinos generated as να at time t = 0 and detected as νβ at time t as vβα as was done by Mecozzi
and Bellini [2], we get

vβα = 〈x〉βα

t
=

∑
i |Cβα

i |2 vi + ∑
i> j Re(Cβα

i Cβα∗
j (vi + v j)e−i�Eijt)e−(vi−v j)

2t2a2/8∑
i |Cβα

i |2 + 2
∑

i> j Re(Cβα
i Cβα∗

j e−i�Eijt)e−(vi−v j)
2t2a2/8

. (10)

This is the main result of the Letter.
We now consider the special case of two generation mixing with μ, τ as the two neutrino flavours. Substituting α = β = μ, and de-

noting Cμμ = cos2 θ, Cμμ = sin2 θ , we have
1 2
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vμμ = v1 cos4 θ + v2 sin4 θ + (v1 + v2) sin2 θ cos2 θ cos(�E12t)e−(v1−v2)2t2a2/8

cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos(�E12t)e−(v1−v2)2t2a2/8
. (11)

Let us consider the two extreme limits from the above equation. First consider the case when the width a−1 of the wave packets in the
x-space is large compared to the distance of separation between the two centres of the wave packets, that is a(v1 − v2)t � 1. In this limit
Eq. (11) becomes

vμμ = v1 cos4 θ + v2 sin4 θ + (v1 + v2) sin2 θ cos2 θ cos(�E12t)

cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos(�E12t)

= 1

2

[
(v1 + v2) + (v1 − v2)

cos 2θ

1 − sin2 2θ sin2(�E12t/2)

]
. (12)

This agrees with the result of Mecozzi and Bellini [2].
However as the distance or time of propagation increases, the width of the wave packets in x-space becomes small compared to the

distance of separation between the two centres of the wave packets, a(v1 − v2)t � 1, and we get

vμμ = v1 cos4 θ + v2 sin4 θ

cos4 θ + sin4 θ
= 1

2

[
(v1 + v2) + (v1 − v2)

cos 2θ

1 − 1
2 sin2 2θ

]
, (13)

which is the weighted average of the group velocities of the two wave packets. Interestingly, the effect of the Gaussian suppression is
precisely the same as taking the average over energy and distance in the denominator of Eq. (12). This makes sense since, for instance,
at astrophysical distances, the neutrino wave-length is small compared to the distance of propagation.

Thus the result in Eq. (10) generalises the result of Mecozzi and Bellini to wave packets of finite width. Because of the approximation
made in Eq. (6), for large a the damping factor exp(−(v1 − v2)

2t2a2/8) is only approximate, although its exact replacement also will
damp the oscillatory factor cos(�E12t).

If the calculations are done for waves of infinite spatial extent, the integrals occurring in the numerator and denominator of Eq. (8)
would be individually divergent, although the final result would turn out to be finite. However, it is better to do these calculations with
wave packets of finite width a, as has been done above, and take the limit of a → 0 in the end.

We have superposed the 3 mass eigenstates with the same momentum p but different Ei to form the neutrino state vector in Eq. (2).
Should one superpose different pi but the same E , or, different pi and different Ei ? This question has been studied in recent literature [4].
Such possibilities will be included in a future study of the group velocities of neutrino waves, which is under preparation.

For neutrinos whose energy is very large compared to their rest masses, the formula in Eq. (11) may be written in the form

vμμ = v1 cos4 θ + v2 sin4 θ + (v1 + v2) sin2 θ cos2 θ cos ye−(δp/p)2 y2/4

cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos ye−(δp/p)2 y2/4
, (14)

where y = �m2L/(2E), �m2 and L being the measured mass-squared difference and base-line distance and δp = a/
√

2 the width of the
p-space wave packet. Thus the exponential damping factor multiplying the oscillatory factor cos y is simply e−(δp/p)2 y2/4 where δp/p is
the fractional uncertainty in momentum.

We also note that the formula in Eqs. (11) and (10) for two- and three-generations are valid, to the leading order, for propagation
through matter at constant density when vacuum values of Ei and the mixing angles are replaced by their matter-dependent values.

From Eq. (6), the normalised oscillation probability, that is, the probability for detecting flavour β at time t is

Pβα =
∫

|Aβα |2 dx =
∑

i

∣∣Cβα
i

∣∣2 +
∑
i> j

2 Re
(
Cβα

i Cβα∗
j e−i�Eijt

)
e−(δp/p)2 y2/4. (15)

This differs from the usual oscillation formula by the factor exp(−(δp/p)2 y2/4) in the second term. In view of the successful neutrino
oscillation phenomenology achieved so far, we will assume that a = √

2δp is so small that this factor can be replaced by unity for all the
terrestrial experiments as well as solar neutrino experiments.

Since the oscillation probability given in Eq. (15) is the denominator in Eq. (10), the group velocity can become very large if the
oscillation probability is very small. In fact, it can become infinite if the oscillation probability at that distance is zero. This is the origin
of superluminal propagation, as our analysis in the next section will clearly show.

We now come back to the interpretation of 〈x〉βα defined in Eq. (8) which is the basis of the above formulae. Note that in the
denominator we have

∫
dx |Aβα |2 instead of

∑
β

∫
dx |Aβα |2 which is unity. Thus 〈x〉βα must be interpreted as the conditional measurement

of the position of the neutrino under the condition that only νβ is detected. Here the probability amplitude for detecting it as νβ itself
is regarded as the wave function for normalising the expectation value of x. This is to be contrasted with the usual definition of the
expectation value of x, independent of the flavour detected, namely

〈x〉α =
∑

β

∫
x|Aβα |2 dx∑

β

∫ |Aβα|2 dx
=

∑
β

∫
x|Aβα |2 dx. (16)

We may distinguish this case by calling it the unconditional measurement of the expectation value of x.
Before we go to the numerical analysis, we make some general remarks. As already pointed out, the origin of the superluminal

propagation is the vanishing of the oscillation probability Pβα in the denominator of Eq. (10). In other words, superluminal propagation
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and the vanishing of the oscillation probability go together. Since the number of events also vanishes, one has the paradoxical situation of
unobservable superluminal propagation. Our numerical analysis below is subject to this criticism.

In the particular case of the OPERA experiment, Pβα becomes the survival probability Pμμ . There is no evidence for the survival
probability Pμμ in OPERA becoming vanishingly small. Hence explanation of superluminality through enhancement of the group velocity
in the standard oscillation frame-work as discussed above is untenable.

Our numerical analysis will be based on the group velocity derived from the conditional measurement of 〈x〉βα defined in Eq. (8),
following Mecozzi and Bellini [2]. Alternatively, one could base the analysis on the group velocity derived from the unconditional mea-
surement 〈x〉α defined in Eq. (16). Since this does not have the vanishing denominator, it will not lead to superluminal group velocity.

Actually, for the OPERA experiment, both 〈x〉βα and 〈x〉α will give essentially the same result for the group velocity since Pμμ at OPERA
does not deviate very much from unity, as far as is known.

3. Numerical analysis with three generations

To obtain a realistic estimate for the group velocity of muon neutrinos, and its implications, we discuss the three generation scenario.
As shown in the previous section, the Gaussian smearing will have no effect if (δp/p)2 � 1. We will work under this assumption and

make estimates for this quantity later, showing that it is indeed small. As a first approximation we neglect the matter effects.
Following Eq. (10), we may write the “group velocity” of the superposition that starts as νμ and is detected as νμ (which we denote

as vμ for simplicity) as

vμ = v2 + Sμ
12(v1 − v2) + Sμ

32(v3 − v2) ≡ v2 + �vμ. (17)

The factors Sij are given as

Sμ
12 = 1

Pμμ
|Uμ1|2

[
1 − 2|Uμ2|2 sin2(�E21t/2) − 2|Uμ3|2 sin2(�E31t/2)

]
, (18)

Sμ
32 = 1

Pμμ
|Uμ3|2

[
1 − 2|Uμ1|2 sin2(�E31t/2) − 2|Uμ2|2 sin2(�E32t/2)

]
, (19)

where the denominator, which is simply the survival probability of νμ , is given by

Pμμ = 1 − 4
3∑

j>i=1

|Uμi|2|Uμ j|2 sin2(�Eijt/2). (20)

Here

�Eijt

2
= (Ei − E j)t

2
≈ 1.27

�i j(eV2)L(km)

E(GeV)
, (21)

where �i j = m2
i − m2

j and the mixing parameters are given in the basis where the charged lepton mass matrix is diagonal as

U =
[ c13c12 c13s12 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

]
, (22)

where ci j = cos θi j , si j = cos θi j and δ is the CP phase. The coefficients Uμi correspond to the second row of the mixing matrix. Note that
in the absence of any mixing vμ in Eq. (17) reduces to v2, as it should.

We now present a numerical analysis of the possible values of vμ with realistic parameter values for the mixing angles and mass
squared differences. We use typical values/ranges for the mass-squared differences and neutrino mixing parameters: �21 = 7.6×10−5 eV2,
|�32| = 2 × 10−3 eV2, θ12 = 34◦ , 36◦ � θ23 � 54◦ , θ13 � 10◦ while δCP is unknown [5]. The sign of �32 is not known and there are two
possible hierarchies, m2

3 > m2
2 known as normal hierarchy (N) and m2

3 < m2
2 known as inverted hierarchy (I). We consider results for both

these cases.
Note that the propagation can become superluminal when the Sij are significantly enhanced over unity. Fig. 1 shows the values of θ23,

close to maximal mixing, where this enhancement is seen, for different mass hierarchies as well as values of θ13. (Notice therefore that
this measurement is sensitive to the mass ordering in the 2–3 sector which is as yet unknown.)

This enhancement of the group velocity occurs for L/E (km/GeV) ∼ 600, well within the range of the OPERA experiment, viz.,
7 < L/E (km/GeV) < 730.

However, it can be seen from the right hand panel of Fig. 1 that Pμμ is very close to zero precisely at these values, that is, the
enhancement of Sij is dominantly due to the vanishing of the denominator. (The maxima of Sij are slightly offset from the minima
of Pμμ because of the dependence of the numerator on the mixing parameters as well. In fact, when θ13 = 0, Pμμ and Sij both vanish
near θ23 = 45◦ .) This in turn means that there will be hardly any events that survive at these values, for this conditional measurement!

Several remarks are in order:

• The first is that the mixing parameters as well as L/E need to be extremely fine-tuned in order to get this effect. However they are
almost washed out by the suppression of the event rate due to small survival probability.
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Fig. 1. (Left) The terms S12 and S32 as a function of θ23. The values on the left are for the normal hierarchy solution with θ13 = 0 while those on the right are for the
inverted hierarchy with θ13 = 10◦ . In both sets, the curves for S32 have been offset by θ23 = 0.1◦ for clarity, else the two curves for S12 and S32 would overlap each other.
In the former case, δCP = 0 and L/E = 611.165 km/GeV while for the latter, δCP = 180◦ and L/E = 604.629 km/GeV. (Right) The denominator Pμμ plotted as a function of
θ23 for the same parameters. The dips as Pμμ → 0 correspond to the sharp peaks in Sij on the left.

• The extreme enhancement of Sij over unity is required in order to obtain superluminal velocities commensurate with the OPERA
observation. This is because the coefficients of Sij which are (vi − v j) in Eq. (17) behave as � ji/(2p2) and are small due to the highly
suppressing factor of 2p2 in the denominator. It is unlikely that such small excesses will be measurable by any experiment. The larger
the enhancement required, the more finely tuned are the parameters.

• Moreover, the fine-tuning in the value of L/E would imply that the enhancement of the velocity only occurs for a single E value when
the base-line distance L is kept fixed, in contrast to the observed roughly constant enhancement over a range of 1 � E � 100 GeV as
observed in OPERA [1].
One way of working around this limitation is to consider the energy dependence of the matter-dependent contributions. The usual
electro-weak interactions in matter lead to the inclusion of a matter-dependent potential, V EW , that alters the matter-dependent
mass-squared differences in a non-trivial way; however, the resulting change is not large enough to give the required enhancement of
the factor of 14 in the term �m

32L/(4E) at 〈E〉 = 17 GeV.
One possible solution is the inclusion of a new matter interaction V new with the same energy behaviour, but about an order of mag-
nitude larger than the usual electro-weak potential. Then, at energies around 〈E〉 = 17 GeV relevant to the OPERA data, the expression
for the matter-dependent mass-squared differences simplifies to

�m
ij ≈ �i j + 2E V new, (23)

so that the term occurring in �vμ becomes

�m
ij L

4E
≈ �i j L

4E
+ V newL

2
. (24)

The energy dependence of this matter potential is exactly what is required so that the ratio �m
ij /E is approximately independent of

E for E ∼ 10s of GeV (but does not significantly alter the atmospheric neutrino analysis). Such an energy-independent contribution
would remove the fine-tuning in L/E that currently occurs in the expressions for �vμ and would in principle uniformly allow for
superluminal propagation of all velocities relevant to the OPERA analysis. However, while resolving the fine-tuning in L/E , the new
matter potential enhances the relevant terms in a manner identical to the vacuum analysis, viz., through the vanishing of Pμμ . Hence,
it runs into the same difficulties with observing the effect as discussed earlier.

• In spite of what is said above, superluminal group velocity is a real effect and may be observable in the future, as shown in the
following example. Consider the 2-flavour case where we neglect m2 and set m3 = �32 ∼ 2 × 10−3 eV2. For smaller energies of the
order of keVs, observable excesses of vμ over unity can be obtained for a modest value of Pμμ ∼ 0.03. This corresponds to sin2 2θ23 =
0.97, with the ratio L/E tuned so that sin2(�32L/(4E)) = 1 (achievable with energies in keV and length in meters); this leads to
vμ = 1 − �32/(2p2) × (0.5 − cos 2θ23/Pμμ) ∼ 1 + 6�32/(2p2). For energy E in keV we get an enhancement vμ − 1 = 6 × 10−9/E2; it
may thus be possible to observe the effect since Pμμ is not zero. Of course, there are many experimental problems to be overcome
before such an observation is achieved.

4. Other implications of group velocity measurement

We add a few remarks on the implication of the OPERA result independent of the fact that it is superluminal or subluminal. Consider
a possible measurement of group velocities of electron and muon neutrinos in a future possible experiment. Following Eq. (17), these
velocities in vacuum may be written in the form

ve = v1 + Se
21(v2 − v1) + Se

31(v3 − v1),

vμ = v2 + Sμ
12(v1 − v2) + Sμ

32(v3 − v2), (25)

where Sμ are given in Eqs. (18) and (19) and Se are given by
i j i j
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Se
21 = |Ue1|2[1 − 2|Ue2|2 sin2(�E12t/2) − 2|Ue3|2 sin2(�E13t/2)]

1 − 4
∑3

j>i=1 |Uei|2|Uej|2 sin2(�Eijt/2)
, (26)

and

Se
31 = |Ue3|2[1 − 2|Ue1|2 sin2(�E13t/2) − 2|Ue2|2 sin2(�E23t/2)]

1 − 4
∑3

j>i=1 |Uei|2|Uej|2 sin2(�Eijt/2)
. (27)

Simultaneous measurement of these two velocities immediately gives information on the ordering of masses m2 and m3 since we already
know that m2 > m1 from the solution to the solar neutrino problem. Unlike earlier proposed solutions [6], this does not require matter
effects to resolve the issue. Even a short base-line experiment with neutrino factories with muon storage rings may help resolve the
hierarchy issue. Note that the ve and vμ could refer to either neutrinos or antineutrinos. The caveat is that the effect is magnified only
for a given set of parameter values including L/E .

5. Conclusions and some remarks

To summarise, we have considered the superposition of 3 energy (mass) eigenstates with the same momentum p, but with different
energies Ei to form a neutrino flavour state. We have included the effect of the finite width of wave packets of the same width and
considered its effect on the group velocity of the neutrino flavour state.

When this is applied to the propagation of νμ for distances of the order of hundreds of kilometres and energies corresponding to the
observation of muon neutrinos in the OPERA experiment we find the effect is very small. Effectively the finite width can be ignored as is
done in Ref. [2].

However the effect of width increases with distance. For astronomical distances the effect of finite width is to reduce the group velocity
to a weighted average of the velocities of the individual energy eigenstates. This explains why, even if the OPERA result is correct, there is
no contradiction with the absence of superluminal propagation of neutrinos from supernova SN1987a.

Our analysis shows that superluminal propagation of neutrinos occurs whenever the oscillation probability corresponding to that mea-
surement vanishes. For instance, muon neutrinos are dominantly observed at OPERA; these will exhibit superluminal behaviour precisely
when the survival probability Pμμ vanishes. While Pμμ does not vanish for the parameter range of the OPERA measurement, in principle,
this feature makes superluminal neutrinos effectively unobservable through conditional measurement as explained in Section 2.

Finally we discuss the implication of the OPERA result irrespective of superluminality or otherwise. The neutrino mass ordering or
hierarchy is not fully known. The present understanding is that this requires separate measurement of oscillations of neutrinos and
anti-neutrinos in the presence of matter. The OPERA measurement of neutrino flavour “velocity” has added a new way of precision
measurement of neutrino parameters and may have significance in the context of neutrino mass hierarchy (provided the parameters lie in
an extremely narrow part of the known range of neutrino parameters). A detailed analysis including the effect of matter will be presented
elsewhere.

After most of the work reported here was completed, we came across Ref. [7] which overlaps with parts of the present Letter. We thank
Tim R. Morris for bringing to our attention his paper [8] in which similar ideas have been discussed. In particular, the extreme fine-tuning
of parameters required to produce velocities of the order observed in OPERA and the difficulty that the effect is seen only at fixed energy
was pointed out in this Letter. This Letter points out the existence of multiple peaks, that would give rise to a strong energy dependence,
in addition.

Acknowledgements

We are grateful to G. Date for many discussions, clarifications and comments. We also thank N.D. Hari Dass, S. Kalyana Rama, D. Sahoo,
N. Sinha and R. Sinha for many discussions.

References

[1] T. Adam, et al., Opera Collaboration, arXiv:1109.4897 [hep-ex], 2011.
[2] A. Mecozzi, M. Bellini, arXiv:1110.1253 [hep-ph], 2011.
[3] E.Kh. Akhmedov, A.Yu. Smirnov, Phys. Atom. Nucl. 72 (1363) (2009), arXiv:0905.1903 [hep-ph].
[4] See, for example, C. Giunti, Mod. Phys. Lett. A 16 (2001) 2363, arXiv:hep-ph/0104148v1, and references therein.
[5] G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, Phys. Rev. D 84 (2011) 053007, arXiv:1106.6028 [hep-ph].
[6] D. Indumathi, M.V.N. Murthy, Phys. Rev. D 71 (2005) 013001, arXiv:hep-ph/0407336.
[7] M.V. Berry, N. Brunner, S. Popescu, P. Shukla, arXiv:1110.2832 [hep-ph], 2011.
[8] T.R. Morris, arXiv:1110.2463v2 [hep-ph], 2011.


	Group velocity of neutrino waves
	1 Introduction
	2 Calculation of the group velocity
	3 Numerical analysis with three generations
	4 Other implications of group velocity measurement
	5 Conclusions and some remarks
	Acknowledgements
	References


