We consider the interpretation of the MiniBooNE low-energy anomaly and the
Gallium radioactive source experiments anomaly in terms of short-baseline
electron neutrino disappearance in the framework of 3+1 four-neutrino mixing
schemes. The separate fits of MiniBooNE and Gallium data are highly compatible,
with close best-fit values of the effective oscillation parameters Delta m^2
and sin^2 2 theta. The combined fit gives Delta m^2 >~ 0.1 eV^2 and 0.11 <
sin^2 2 theta < 0.48 at 2 sigma. We consider also the data of the Bugey and
Chooz reactor antineutrino oscillation experiments and the limits on the
effective electron antineutrino mass in beta-decay obtained in the Mainz and
Troitsk Tritium experiments. The fit of the data of these experiments limits
the value of sin^2 2 theta below 0.10 at 2 sigma. Considering the tension
between the neutrino MiniBooNE and Gallium data and the antineutrino reactor
and Tritium data as a statistical fluctuation, we perform a combined fit which
gives Delta m^2 \simeq 2 eV and 0.01 < sin^2 2 theta < 0.13 at 2 sigma.
Assuming a hierarchy of masses m_1, m_2, m_3 << m_4, the predicted
contributions of m_4 to the effective neutrino masses in beta-decay and
neutrinoless double-beta-decay are, respectively, between about 0.06 and 0.49
and between about 0.003 and 0.07 eV at 2 sigma. We also consider the
possibility of reconciling the tension between the neutrino MiniBooNE and
Gallium data and the antineutrino reactor and Tritium data with different
mixings in the neutrino and antineutrino sectors. We find a 2.6 sigma
indication of a mixing angle asymmetry.Comment: 14 pages; final version published in Phys.Rev.D82:053005,201