729 research outputs found
Can giant radio halos probe the merging rate of galaxy clusters?
Radio and X-ray observations of galaxy clusters probe a direct link between
cluster mergers and giant radio halos (RH), suggesting that these sources can
be used as probes of the cluster merging rate with cosmic time. In this paper
we carry out an explorative study that combines the observed fractions of
merging clusters (fm) and RH (fRH) with the merging rate predicted by
cosmological simulations and attempt to infer constraints on merger properties
of clusters that appear disturbed in X-rays and of clusters with RH. We use
morphological parameters to identify merging systems and analyze the currently
largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and
0.2<z<0.33, from the Planck SZ cluster catalogue). We found that in this sample
fm~62-67% while fRH~44-51%. The comparison of the theoretical f_m with the
observed one allows to constrain the combination (xi_m,tau_m), where xi_m and
tau_m are the minimum merger mass ratio and the timescale of merger-induced
disturbance. Assuming tau_m~ 2-3 Gyr, as constrained by simulations, we find
that the observed f_m matches the theoretical one for xi_m~0.1-0.18. This is
consistent with optical and near-IR observations of clusters in the sample
(xi_m~0.14-0.16). The fact that RH are found only in a fraction of merging
clusters may suggest that merger events generating RH are characterized by
larger mass ratio; this seems supported by optical/near-IR observations of RH
clusters in the sample (xi_min~0.2-0.25). Alternatively, RH may be generated in
all mergers but their lifetime is shorter than \tau_m (by ~ fRH/fm). This is an
explorative study, however it suggests that follow up studies using the
forthcoming radio surveys and adequate numerical simulations have the potential
to derive quantitative constraints on the link between cluster merging rate and
RH at different cosmic epochs and for different cluster masses.Comment: 10 pages, 3 figures, accepted for publication in A&
The Mass Function and Average Mass Loss Rate of Dark Matter Subhaloes
We present a simple, semi-analytical model to compute the mass functions of
dark matter subhaloes. The masses of subhaloes at their time of accretion are
obtained from a standard merger tree. During the subsequent evolution, the
subhaloes experience mass loss due to the combined effect of dynamical
friction, tidal stripping, and tidal heating. Rather than integrating these
effects along individual subhalo orbits, we consider the average mass loss
rate, where the average is taken over all possible orbital configurations. This
allows us to write the average mass loss rate as a simple function that depends
only on redshift and on the instantaneous mass ratio of subhalo and parent
halo. After calibrating the model by matching the subhalo mass function (SHMF)
of cluster-sized dark matter haloes obtained from numerical simulations, we
investigate the predicted mass and redshift dependence of the SHMF.We find
that, contrary to previous claims, the subhalo mass function is not universal.
Instead, both the slope and the normalization depend on the ratio of the parent
halo mass, M, and the characteristic non-linear mass M*. This simply reflects a
halo formation time dependence; more massive parent haloes form later, thus
allowing less time for mass loss to operate. We analyze the halo-to-halo
scatter, and show that the subhalo mass fraction of individual haloes depends
most strongly on their accretion history in the last Gyr. Finally we provide a
simple fitting function for the average SHMF of a parent halo of any mass at
any redshift and for any cosmology, and briefly discuss several implications of
our findings.Comment: Replaced to match version accepted for publication in MNRAS. Small
section added that discusses higher-order moments of subhalo occupation
distribution (including a new figure). Otherwise, few small change
Weak lensing of large scale structure in the presence of screening
A number of alternatives to general relativity exhibit gravitational
screening in the non-linear regime of structure formation. We describe a set of
algorithms that can produce weak lensing maps of large scale structure in such
theories and can be used to generate mock surveys for cosmological analysis. By
analysing a few basic statistics we indicate how these alternatives can be
distinguished from general relativity with future weak lensing surveys.Comment: 25 pages, 7 figures, accepted by JCAP. v2: references updat
Turbulent pressure support and hydrostatic mass-bias in the intracluster medium
The degree of turbulent pressure support by residual gas motions in galaxy
clusters is not well known. Mass modelling of combined X-ray and Sunyaev
Zel'dovich observations provides an estimate of turbulent pressure support in
the outer regions of several galaxy clusters. Here, we test two different
filtering techniques to disentangle bulk from turbulent motions in
non-radiative high-resolution cosmological simulations of galaxy clusters using
the cosmological hydro code ENZO. We find that the radial behavior of the ratio
of non-thermal pressure to total gas pressure as a function of cluster-centric
distance can be described by a simple polynomial function. The typical
non-thermal pressure support in the centre of clusters is 5%, increasing
to 15% in the outskirts, in line with the pressure excess found in recent
X-ray observations. While the complex dynamics of the ICM makes it impossible
to reconstruct a simple correlation between turbulent motions and hydrostatic
bias, we find that a relation between them can be established using the median
properties of a sample of objects. Moreover, we estimate the contribution of
radial accelerations to the non-thermal pressure support and conclude that it
decreases moving outwards from 40% (in the core) to 15% (in the cluster's
outskirts). Adding this contribution to one provided by turbulence, we show
that it might account for the entire observed hydrostatic bias in the innermost
regions of the clusters, and for less than 80% of it at .Comment: 20 pages; 21 figures; Substantial Revision; MNRAS in pres
The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates
Using a cosmological N-Body simulation and a sample of re-simulated
cluster-like haloes, we study the mass loss rates of dark matter subhaloes, and
interpret the mass function of subhaloes at redshift zero in terms of the
evolution of the mass function of systems accreted by the main halo progenitor.
When expressed in terms of the ratio between the mass of the subhalo at the
time of accretion and the present day host mass the unevolved subhalo mass
function is found to be universal. However, the subhalo mass function at
redshift zero clearly depends on , in that more massive host haloes host
more subhaloes. To relate the unevolved and evolved subhalo mass functions, we
measure the subhalo mass loss rate as a function of host mass and redshift. We
find that the average, specific mass loss rate of dark matter subhaloes depends
mainly on redshift. These results suggest a pleasingly simple picture for the
evolution and mass dependence of the evolved subhalo mass function. Less
massive host haloes accrete their subhaloes earlier, which are thus subjected
to mass loss for a longer time. In addition, their subhaloes are typically
accreted by denser hosts, which causes an additional boost of the mass loss
rate. To test the self-consistency of this picture, we use a merger trees
constructed using the extended Press-Schechter formalism, and evolve the
subhalo populations using the average mass loss rates obtained from our
simulations, finding the subhalo mass functions to be in good agreement with
the simulations. [abridged]Comment: 12 pages, 12 figures; submitted to MNRA
A PCA-based automated finder for galaxy-scale strong lenses
We present an algorithm using Principal Component Analysis (PCA) to subtract
galaxies from imaging data, and also two algorithms to find strong,
galaxy-scale gravitational lenses in the resulting residual image. The combined
method is optimized to find full or partial Einstein rings. Starting from a
pre-selection of potential massive galaxies, we first perform a PCA to build a
set of basis vectors. The galaxy images are reconstructed using the PCA basis
and subtracted from the data. We then filter the residual image with two
different methods. The first uses a curvelet (curved wavelets) filter of the
residual images to enhance any curved/ring feature. The resulting image is
transformed in polar coordinates, centered on the lens galaxy center. In these
coordinates, a ring is turned into a line, allowing us to detect very faint
rings by taking advantage of the integrated signal-to-noise in the ring (a line
in polar coordinates). The second way of analysing the PCA-subtracted images
identifies structures in the residual images and assesses whether they are
lensed images according to their orientation, multiplicity and elongation. We
apply the two methods to a sample of simulated Einstein rings, as they would be
observed with the ESA Euclid satellite in the VIS band. The polar coordinates
transform allows us to reach a completeness of 90% and a purity of 86%, as soon
as the signal-to-noise integrated in the ring is higher than 30, and almost
independent of the size of the Einstein ring. Finally, we show with real data
that our PCA-based galaxy subtraction scheme performs better than traditional
subtraction based on model fitting to the data. Our algorithm can be developed
and improved further using machine learning and dictionary learning methods,
which would extend the capabilities of the method to more complex and diverse
galaxy shapes
Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey
We study the characteristics of the galaxy cluster samples expected from the
European Space Agency's Euclid satellite and forecast constraints on
cosmological parameters describing a variety of cosmological models. The method
used in this paper, based on the Fisher Matrix approach, is the same one used
to provide the constraints presented in the Euclid Red Book (Laureijs et
al.2011). We describe the analytical approach to compute the selection function
of the photometric and spectroscopic cluster surveys. Based on the photometric
selection function, we forecast the constraints on a number of cosmological
parameter sets corresponding to different extensions of the standard LambdaCDM
model. The dynamical evolution of dark energy will be constrained to Delta
w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a
(w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance
matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a
FoM=802. The amplitude of primordial non-Gaussianity, parametrised by f_NL,
will be constrained to \Delta f_NL ~ 6.6 for the local shape scenario, from
Euclid clusters alone. Using only Euclid clusters, the growth factor parameter
\gamma, which signals deviations from GR, will be constrained to Delta
\gamma=0.02, and the neutrino density parameter to Delta Omega_\nu=0.0013 (or
Delta \sum m_\nu=0.01). We emphasise that knowledge of the observable--mass
scaling relation will be crucial to constrain cosmological parameters from a
cluster catalogue. The Euclid mission will have a clear advantage in this
respect, thanks to its imaging and spectroscopic capabilities that will enable
internal mass calibration from weak lensing and the dynamics of cluster
galaxies. This information will be further complemented by wide-area
multi-wavelength external cluster surveys that will already be available when
Euclid flies. [Abridged]Comment: submitted to MNRA
Magnetotelluric investigation in the High Agri Valley (southern Apennine, Italy)
Abstract. In this paper we present the result of a magnetotelluric (MT) investigation carried out across the High Agri Valley (HAV), southern Italy. Several MT soundings were carried out in order to obtain a ~15 km long 2-D resistivity model with an investigation depth of ~10 km. The main aim was to provide valuable data on the geological and structural setting of the HAV. The MT model was compared with pre-existing geological, geophysical and seismic data. The MT model can be schematized as a superposition of three stack lateral varying layers with different thickness and resistivity values: a surficial low–medium resistivity layer associated with the Quaternary deposits and to the allochthonous units; and a deeper high resistivity layer related to the Apulia Platform, separated by a thin layer connected to the mélange zone and to the Pliocene terrigenous marine deposits. Sharp lateral resistivity variations are interpreted as faults that, on the basis of accurate focal mechanism computations, display normal-faulting kinematics
Analytical Approach to Subhaloes Population in Dark Matter Haloes
In the standard model of cosmic structure formation, dark matter haloes form
by gravitational instability. The process is hierarchical: smaller systems
collapse earlier, and later merge to form larger haloes. The galaxy clusters,
hosted by the largest dark matter haloes, are at the top of this hierarchy
representing the largest as well as the last structures formed in the universe,
while the smaller and first haloes are those Earth-sized dark subhaloes which
have been both predicted by theoretical considerations and found in numerical
simulations, though it does not exist any observational hints of their
existence. The probability that a halo of mass at redshift will be part
of a larger halo of mass at the present time can be described in the frame
of the extended Press & Schecter theory making use of the progenitor
(conditional) mass function. Using the progenitor mass function we calculate
analytically, at redshift zero, the distribution of subhaloes in mass,
formation epoch and rarity of the peak of the density field at the formation
epoch. That is done for a Milky Way-size system, assuming both a spherical and
an ellipsoidal collapse model. Our calculation assumes that small progenitors
do not lose mass due to dynamical processes after entering the parent halo, and
that they do not interact with other subhaloes. For a CDM
power spectrum we obtain a subhalo mass function
proportional to with a model-independent .
Assuming the dark matter is a weakly interacting massive particle, the inferred
distributions is used to test the feasibility of an indirect detection in the
-rays energy band of such a population of subhaloes with a GLAST-like
satellite.Comment: 10 pages, 7 figures - submitted to MNRA
Using the ERT method in tectonically active areas: hints from Southern Apennine (Italy)
Abstract. Electrical Resistivity Tomography (ERT) method has been used to study two tectonically active areas of southern Apennine (Caggiano Faults and Ufita Basin). The main aim of this job was to study the structural setting of the investigated areas, i.e. the geometry of the basins at depth, the location of active faults at surface, and their geometrical characterization. The comparison between ERT and trench/drilling data allowed us to evaluate the efficacy of the ERT method in studying active faults and the structural setting of seismogenic areas. In the Timpa del Vento intermontane basin, high resolution ERT across the Caggiano Fault scarps, with different arrays, electrode spacing (from 1 to 10 m) and penetration depth (from about 5 to 40 m) was carried out. The obtained resistivity models allowed us to locate the fault planes along the hillslope and to gather information at depth, as later confirmed by paleoseismological trenches excavated across the fault trace. In the Ufita River Valley a 3560-m-long ERT was carried out across the basin, joining 11 roll-along multi-channel acquisition system with an electrode spacing of 20 m and reaching an investigation depth of about 170 m. The ERT allowed us to reconstruct the geometry and thickness of the Quaternary deposits filling the Ufita Valley. Our reconstruction of the depositional setting is in agreement with an interpretative geological section based on borehole data
- …