907 research outputs found
All scale-free networks are sparse
We study the realizability of scale free-networks with a given degree
sequence, showing that the fraction of realizable sequences undergoes two
first-order transitions at the values 0 and 2 of the power-law exponent. We
substantiate this finding by analytical reasoning and by a numerical method,
proposed here, based on extreme value arguments, which can be applied to any
given degree distribution. Our results reveal a fundamental reason why large
scale-free networks without constraints on minimum and maximum degree must be
sparse.Comment: 4 pages, 2 figure
Engineering of janus-like dendrimers with peptides derived from glycoproteins of herpes simplex virus type 1: Toward a versatile and novel antiviral platform
Novel antiviral nanotherapeutics, which may inactivate the virus and block it from entering host cells, represent an important challenge to face viral global health emergencies around the world. Using a combination of bioorthogonal copper-catalyzed 1,3-dipolar alkyne/azide cycloaddition (CuAAC) and photoinitiated thiol–ene coupling, monofunctional and bifunctional peptidodendrimer conjugates were obtained. The conjugates are biocompatible and demonstrate no toxicity to cells at biologically relevant concentrations. Furthermore, the orthogonal addition of multiple copies of two different antiviral peptides on the surface of a single dendrimer allowed the resulting biocon-jugates to inhibit Herpes simplex virus type 1 at both the early and the late stages of the infection process. The presented work builds on further improving this attractive design to obtain a new class of therapeutics
Effects of Extracorporeal Magnetic Stimulation in Fecal Incontinence.
Background: Fecal incontinence (FI) is a common condition that has devastating consequences for patients' QOL. In some patients, the conventional functional pelvic floor electrical stimulation has been effective but is an invasive and embarrassing treatment. The object of the study was to evaluate the feasibility of functional extracorporeal magnetic stimulation (FMS) in strengthening the pelvic floor muscles without an anal plug and the embarrassment of undressing. Materials and Methods: Thirty patients (26 female and 4 males) with FI were enrolled. All patients were assessed during a specialized coloproctology evaluation followed by endoanal ultrasonography and anorectal manometry. All patients underwent an FMS treatment once weekly for 8 weeks. Patients' outcome was assessed by the Cleveland Clinic Fecal Incontinence Score (CCFIS) and by the fecal incontinence QOL questionnaire (FIQL). Results: After 8 weeks, the number of solid and liquid stool leakage per week was significantly reduced (p<0.05) with a significant improvement of the CCFIS and of the FIQL (p<0.05). Moreover, the authors recorded a missed recruitment of the agonist and antagonists' defecation muscles. Conclusion: FMS is a safe, non-invasive and painless treatment for FI. It could be recommended for selected patients with non-surgical FI to ensure a rapid clinical improvement
Degree correlations in directed scale-free networks
Scale-free networks, in which the distribution of the degrees obeys a
power-law, are ubiquitous in the study of complex systems. One basic network
property that relates to the structure of the links found is the degree
assortativity, which is a measure of the correlation between the degrees of the
nodes at the end of the links. Degree correlations are known to affect both the
structure of a network and the dynamics of the processes supported thereon,
including the resilience to damage, the spread of information and epidemics,
and the efficiency of defence mechanisms. Nonetheless, while many studies focus
on undirected scale-free networks, the interactions in real-world systems often
have a directionality. Here, we investigate the dependence of the degree
correlations on the power-law exponents in directed scale-free networks. To
perform our study, we consider the problem of building directed networks with a
prescribed degree distribution, providing a method for proper generation of
power-law-distributed directed degree sequences. Applying this new method, we
perform extensive numerical simulations, generating ensembles of directed
scale-free networks with exponents between~2 and~3, and measuring ensemble
averages of the Pearson correlation coefficients. Our results show that
scale-free networks are on average uncorrelated across directed links for three
of the four possible degree-degree correlations, namely in-degree to in-degree,
in-degree to out-degree, and out-degree to out-degree. However, they exhibit
anticorrelation between the number of outgoing connections and the number of
incoming ones. The findings are consistent with an entropic origin for the
observed disassortativity in biological and technological networks.Comment: 10 pages, 5 figure
Depth-dependent ordering, two-length-scale phenomena and crossover behavior in a crystal featuring a skin-layer with defects
Structural defects in a crystal are responsible for the "two length-scale"
behavior, in which a sharp central peak is superimposed over a broad peak in
critical diffuse X-ray scattering. We have previously measured the scaling
behavior of the central peak by scattering from a near-surface region of a V2H
crystal, which has a first-order transition in the bulk. As the temperature is
lowered toward the critical temperature, a crossover in critical behavior is
seen, with the temperature range nearest to the critical point being
characterized by mean field exponents. Near the transition, a small two-phase
coexistence region is observed. The values of transition and crossover
temperatures decay with depth. An explanation of these experimental results is
here proposed by means of a theory in which edge dislocations in the
near-surface region occur in walls oriented in the two directions normal to the
surface. The strain caused by the dislocation lines causes the ordering in the
crystal to occur as growth of roughly cylindrically shaped regions. After the
regions have reached a certain size, the crossover in the critical behavior
occurs, and mean field behavior prevails. At a still lower temperature, the
rest of the material between the cylindrical regions orders via a weak
first-order transition.Comment: 12 pages, 8 figure
Efficient and exact sampling of simple graphs with given arbitrary degree sequence
Uniform sampling from graphical realizations of a given degree sequence is a
fundamental component in simulation-based measurements of network observables,
with applications ranging from epidemics, through social networks to Internet
modeling. Existing graph sampling methods are either link-swap based
(Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration
Model). Both types are ill-controlled, with typically unknown mixing times for
link-swap methods and uncontrolled rejections for the Configuration Model. Here
we propose an efficient, polynomial time algorithm that generates statistically
independent graph samples with a given, arbitrary, degree sequence. The
algorithm provides a weight associated with each sample, allowing the
observable to be measured either uniformly over the graph ensemble, or,
alternatively, with a desired distribution. Unlike other algorithms, this
method always produces a sample, without back-tracking or rejections. Using a
central limit theorem-based reasoning, we argue, that for large N, and for
degree sequences admitting many realizations, the sample weights are expected
to have a lognormal distribution. As examples, we apply our algorithm to
generate networks with degree sequences drawn from power-law distributions and
from binomial distributions.Comment: 8 pages, 3 figure
- …