183 research outputs found

    Komprimierung ultrakurzer Lichtimpulse mit Hilfe der Filamentation und eines adaptiven Impulskompressors

    Get PDF
    Filamentation is a promising method for achieving few-cycle ultrashort laserpulses. It has the potential to overtake gas lled hollow bers as the standard technique for compressing intense laser pulses. This diploma thesis describes the development and construction of a novel setup for lamentation and a tool for adaptive pulse compression. The initial pulses with a duration of 25 fs and a single pulse energy of about 1 mJ, are produced by a commercially available laser system. A detailled study of the parameter dependence of the lamentation process was conducted. In the course of this study the optimum parameters both, for focal length and operating mode were determined. A strong dependence on the beam pro le was observerd to nally limit the broadening of the pulses' spectral bandwidth. The spectra obtained supported pulses with a duration of 10.4 fs, but methods for improvement are suggested. Of particular interest is a discovery that was made concerning a dependence of lamentation on the repetition rate of the laser system. Such a dependence has till now not been published and could pose a limitation to the use of lamentation in combination with high repetition rates. Several potential explanations are provided. Furthermore, a procedure for aligning, calibrating and future development of the adaptive pulse compressor is included within this thesis

    A Two-Phase Approach for an Integrated Order Batching and Picker Routing Problem

    Get PDF
    International audienceThis article addresses an integrated warehouse order picking problem. The company HappyChic is specialized in men’s ready-to-wear. A central warehouse is dedicated to supplying, every day, the shops of one brand. We focus on the picking area of this warehouse which relies on human picking system. For each picking wave (period of a working day), a set of customer orders has to be prepared. An order is a set of product references, with quantities, i.e., the numbers of items required. The problem consists in jointly deciding: (1) the division of orders into several boxes,respecting weight and size constraints; (2) the batching of boxes into trolleys, that implicitly defines the routing into the picking area. The objective function aims to minimize the total distance. To deal with the large size instances of HappyChic in short computation times, we design a heuristic method based on the split and dynamic programming paradigms. The results are very convincing: the total covered distance decreases by more than 20%. Moreover, we propose an adaptation of the algorithm to prepare homogeneous boxes with respect to classes of products. Thelogistic department of HappyChic is convinced by results obtained in this research work, and the warehouse management system is currently being updated in order to integrate the proposed algorithm

    Attosecond control in photoionization of D2

    Get PDF
    ABSTRACT: We study the dissociative photoionization of D2 by an attosecond pulse train (APT) in the presence of a near-infrared (IR) field. Strong oscillations in the D+ kinetic energy release spectrum with a half period of the optical cycle of the infrared field are observed and attributed to interferences between ionization pathways involving different harmonic orders of the APT due to the IR-induced coupling between the 1s(sigma)g and 2p(sigma)u ionization channels

    Attosecond control in photoionization of hydrogen molecules

    Get PDF
    ABSTRACT: We report experiments where hydrogen molecules were dissociatively ionized by an attosecond pulse train in the presence of a near-infrared field. Fragment ion yields from distinguishable ionization channels oscillate with a period that is half the optical cycle of the IR field. For molecules aligned parallel to the laser polarization axis, the oscillations are reproduced in two-electron quantum simulations, and can be explained in terms of an interference between ionization pathways that involve different harmonic orders and a laser-induced coupling between the 1s g and 2p u states of the molecular ion. This leads to a situation where the ionization probability is sensitive to the instantaneous polarization of the molecule by the IR electric field and demonstrates that we have probed the IR-induced electron dynamics with attosecond pulses

    "Active surfaces" as Possible Functional Systems in Detection and Chemical (Bio) Reactivity

    Get PDF
    This article presents design strategies to demonstrate approaches to generate functionalized surfaces which have the potential for application in molecular systems; sensing and chemical reactivity applications are exemplified. Some applications are proven, while others are still under active investigation. Adaptation and extension of our strategies will lead to interfacing of different type of surfaces, specific interactions at a molecular level, and possible exchange of signals/cargoes between them. Optimization of the present approaches from each of five research groups within the NCCR will be directed towards expanding the types of functional surfaces and the properties that they exhibit

    Attosecond control of dissociative ionization of O 2 molecules

    Get PDF
    We demonstrate that dissociative ionization of O(2) can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion

    How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials?

    Get PDF
    Malaria continues to be an enormous global health challenge, with millions of new infections and deaths reported annually. This is partly due to the development of resistance by the malaria parasite to the majority of established anti-malarial drugs, a situation that continues to hamper attempts at controlling the disease. This has spurred intensive drug discovery endeavours geared towards identifying novel, highly active anti-malarial drugs, and the identification of quality leads from natural sources would greatly augment these efforts. The current reality is that other than compounds that have their foundation in historic natural products, there are no other compounds in drug discovery as part of lead optimization projects and preclinical development or further that have originated from a natural product start-point in recent years. This paper briefly presents both classical as well as some more modern, but underutilized, approaches that have been applied outside the field of malaria, and which could be considered in enhancing the potential of natural products to provide or inspire the development of anti-malarial lead compounds
    • 

    corecore