72 research outputs found

    Gamma Efficiency Simulations towards Coincidence Measurements for Fusion Cross Sections

    Get PDF
    With the experimental station STELLA (STELlar LAboratory) we will measure fusion cross sections of astrophysical relevance making use of the coincident detection of charged particles and gamma rays for background reduction. For the measurement of gamma rays from the de-excitation of fusion products a compact array of 36 UK FATIMA LaBr3 detectors is designed based on efficiency studies with Geant4. The photo peak efficiency in the region of interest compares to other gamma detection systems used in this field. The features of the internal decay of 138La is used in a background study to obtain an online calibration of the gamma detectors. Background data are fit to the Monte Carlo model of the self activity assuming crude exponential behavior of external background. Accuracy in the region of interest is of the order of some keV in this first study

    Fusion cross section measurements of astrophysical interest for light heavy ions systems within the STELLA project

    Get PDF
    This contribution is focused on the STELLA project (STELlar LAboratory), which aims at the measurement of fusion cross sections between light heavy ions like 12C+12C, 12C+16O or 16O+16O at deep subbarrier energies. The gamma-particle coincidence technique is used in order to reduce background contributions that become dominant for measurements in the nanobarn regime. The experimental setup composed of an ultra high vacuum reaction chamber, a set of 3 silicon strip detectors, up to 36 LaBr3(Ce) scintillators from the UK FATIMA collaboration, and a fast rotating target system will be described. The 12C+12C fusion reaction has been studied from Elab = 11 to 5.6 MeV using STELLA at the Andromède facility in Orsay, France. Preliminary commissioning results are presented in this article

    Rotational excitation of the Hoyle state in 12C

    Get PDF
    12C is synthesised in stars by fusion of three α particles. This process occurs through a resonance in the 12C nucleus, famously known as the Hoyle state. In this state, the 12C nucleus exists as a cluster of α particles. The state is the band-head for a rotational band with the 2+ rotational excitation predicted in the energy region 9 - 11 MeV. This rotational excitation can affect the triple-α process reaction rate by more than an order of magnitude at high temperatures (109 K). Depending on the energy of the resonance, the knowledge of the state can also help determine the structure of the Hoyle state. In the work presented here, the state of interest is populated by beta decay of radioactive 12N ion beam delivered by the IGISOL facility at JYFL, Jyväskylä

    Experimental investigations of the sub-Coulomb 12C+12C and 12C+16O reactions

    Get PDF
    Cluster resonances in light heavy-ion systems like 12C+12C and 12C+16O may have a major impact on astrophysics stellar scenarios. Resonant radiative capture reactions have been studied for these systems at energies at and slightly below their Coulomb barriers to investigate the possible 12C-12C and 12C-16O molecular origin of the resonances. Spins have been attributed to the resonances and specificities of their γ-decay have been identified. At deep sub-barrier energies, a fusion cross section measurement using the particle-γ coincidence technique is discussed for the 12C+12C system. A new project is presented to possibly extend the 12C+12C S low-energy S factor study

    Advances in the Direct Study of Carbon Burning in Massive Stars

    Get PDF
    The C12+C12 fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The C12+C12 system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the C12+C12 fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies

    Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    Get PDF
    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code

    Sub-barrier fusion cross section measurements with STELLA

    Get PDF
    The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromède, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out

    Cross section measurements in the \u3csup\u3e12\u3c/sup\u3eC+\u3csup\u3e12\u3c/sup\u3eC system

    Get PDF
    The 12C+12C fusion reaction is one of the most important for nuclear astrophysics since it determines the carbon ignition in stellar environments. Two experiments which make use of the gamma-particle coincidence technique to measure the 12C+12C S-factors at deep sub barrier energies are discussed. Results are presented showing a decrease of the S-factor below Ec.m. = 3 MeV

    Shape coexistence in Hg-178

    Get PDF
    Lifetime measurements of excited states in Hg-178 have been performed using the Rh-103(Kr-78, p2n) reaction at a beam energy of 354 MeV. The recoil-decay tagging (RDT) technique was applied to select the Hg-178 nuclei and associate the prompt gamma rays with the correlated characteristic ground-state alpha decay. Lifetimes of the four lowest yrast states of Hg-178 have been determined using the recoil distance Doppler-shift (RDDS) method. The experimental data are compared to theoretical predictions with focus on shape coexistence. The results confirm the shift of the deformed prolate structures to higher lying states but also indicate their increasing deformation with decreasing neutron number.Peer reviewe
    corecore