1,194 research outputs found

    Resonance Raman studies of bathorhodopsin: Evidence for a protonated Schiff base linkage

    Full text link

    Cooperative Jahn-Teller Distortion in PrO2

    Full text link
    We report neutron diffraction data on single crystal PrO2 which reveal a cooperative Jahn-Teller distortion at TD = 120 +/- 2 K. Below this temperature an internal distortion of the oxygen sublattice causes the unit cell of the crystallographic structure to become doubled along one crystal axis. We discuss several possible models for this structure. The antiferromagnetic structure below TN = 13.5 K is found to consist of two components, one of which shares the same doubled unit cell as the distorted crystallographic structure. We also present measurements of the magnetic susceptibility, the specific heat capacity and the electrical conductivity of PrO2. The susceptibility data show an anomaly at a temperature close to TD. From the specific heat capacity data we deduce that the ground state is doubly degenerate, consistent with a distortion of the cubic local symmetry. We discuss possible mechanisms for this. The conductivity shows an activated behaviour with an activation energy Ea = 0.262 +/- 0.003 eV.Comment: 12 pages, 14 figures, 2 tables. Additional suggested structure in v

    Thermo-statistical description of gas mixtures from space partitions

    Get PDF
    The new mathematical framework based on the free energy of pure classical fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to multi-component systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on DD-dimensional mixtures in the low-density limit (packing factor η<0.01\eta < 0.01). The formalism combines the free-energy minimization technique with space partitions that assign an available volume vv to each particle. vv is related to the closeness of the nearest neighbor and provides an useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil\mu_{il}, conjugate variable of the populations NilN_{il} of particles class ii with the nearest neighbors of class ll are defined and their relationships with the usual chemical potentials μi\mu_i are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to K\^ac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Investigation of the Composition and Formation Constant of Molecular Complexes

    Full text link

    Machine-learned cloud classes from satellite data for process-oriented climate model evaluation

    Get PDF
    Clouds play a key role in regulating climate change but are difficult to simulate within Earth system models (ESMs). Improving the representation of clouds is one of the key tasks towards more robust climate change projections. This study introduces a new machine-learning based framework relying on satellite observations to improve understanding of the representation of clouds and their relevant processes in climate models. The proposed method is capable of assigning distributions of established cloud types to coarse data. It facilitates a more objective evaluation of clouds in ESMs and improves the consistency of cloud process analysis. The method is built on satellite data from the MODIS instrument labelled by deep neural networks with cloud types defined by the World Meteorological Organization (WMO), using cloud type labels from CloudSat as ground truth. The method is applicable to datasets with information about physical cloud variables comparable to MODIS satellite data and at sufficiently high temporal resolution. We apply the method to alternative satellite data from the Cloud\_cci project (ESA Climate Change Initiative), coarse-grained to typical resolutions of climate models. The resulting cloud type distributions are physically consistent and the horizontal resolutions typical of ESMs are sufficient to apply our method. We recommend outputting crucial variables required by our method for future ESM data evaluation. This will enable the use of labelled satellite data for a more systematic evaluation of clouds in climate models.Comment: Main Paper 16 pages, 11 figures. Supporting material 7 Pages, 8 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Climate Model Intercomparisons: Preparing for the Next Phase

    Get PDF
    Since 1995, the Coupled Model Intercomparison Project (CMIP) has coordinated climate model experiments involving multiple international modeling teams. Through CMIP, climate modelers and scientists from around the world have analyzed and compared state-of-the-art climate model simulations to gain insights into the processes, mechanisms, and conswquences of climate variability and climate change

    On possible skewon effects on light propagation

    Full text link
    We start from a local and linear spacetime relation between the electromagnetic excitation and the field strength. Then we study the generally covariant Fresnel surfaces for light rays and light waves. The metric and the connection of spacetime are left unspecified. Accordingly, our framework is ideally suited for a search of possible violations of the Lorentz symmetry in the photon sector of the extended standard model. We discuss how the skewon part of the constitutive tensor, if suitably parametrized, influences the Fresnel surfaces and disturbs the light cones of vacuum electrodynamics. Conditions are specified that yield the reduction of the original quartic Fresnel surface to the double light cone structure (birefringence) and to the single light cone. Qualitatively, the effects of the real skewon field can be compared to those in absorbing material media. In contrast, the imaginary skewon field can be interpreted in terms of non-absorbing media with natural optical activity and Faraday effects. The astrophysical data on gamma-ray bursts are used for deriving an upper limit for the magnitude of the skewon field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the published versio
    • …
    corecore