99 research outputs found

    Tsunami generation potential of a strike slip fault tip in the westernmost Mediterranean

    Get PDF
    Tsunamis are triggered by sudden seafloor displacements, and usually originate from seismic activity at faults. Nevertheless, strike-slip faults are usually disregarded as major triggers, as they are thought to be capable of generating only moderate seafloor deformation; accordingly, the tsunamigenic potential of the vertical throw at the tips of strike-slip faults is not thought to be significant. We found the active dextral NW–SE Averroes Fault in the central Alboran Sea (westernmost Mediterranean) has a historical vertical throw of up to 5.4 m at its northwestern tip corresponding to an earthquake of Mw 7.0. We modelled the tsunamigenic potential of this seafloor deformation by Tsunami-HySEA software using the Coulomb 3.3 code. Waves propagating on two main branches reach highly populated sectors of the Iberian coast with maximum arrival heights of 6 m within 21 and 35 min, which is too quick for current early-warning systems to operate successfully. These findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought, and should be taken into account for the re-evaluation of tsunami early-warning systems.Versión del edito

    Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)

    Get PDF
    We thank the members of the SARAS and Marlboro cruises in 2011 and 2012. We thank Emanuele Lodolo, Jacques Déverchère, Guillermo Booth-Rea for their helpful comments and discussion. We also thank the editor, Federico Rossetti, for the attention provided to this article. This work was funded by the French program Actions Marges, the EUROFLEETS program (FP7/2007-2013; no. 228344) and project FICTS-2011-03-01. The French program ANR-17-CE03-0004 also supported this work. Seismic reflection data were processed using the Seismic UNIX SU and Geovecteur software. The processed seismic data were interpreted using Kingdom IHS Suite© software. This work also benefited from the Fauces Project (Ref CTM2015-65461-C2-R; MINCIU/FEDER) financed by Ministerio de Economía y Competitividad y al Fondo Europeo de Desarrollo Regiona (FEDER).Progress in the understanding and dating of the sedimentary record of the Alboran Basin allows us to propose a model of its tectonic evolution since the Pliocene. After a period of extension, the Alboran Basin underwent a progressive tectonic inversion starting around 9–7.5 Ma. The Alboran Ridge is a NE–SW transpressive structure accommodating the shortening in the basin. We mapped its southwestern termination, a Pliocene rhombic structure exhibiting series of folds and thrusts. The active Al-Idrissi Fault zone (AIF) is a Pleistocene strike-slip structure trending NNE– SSW. The AIF crosses the Alboran Ridge and connects to the transtensive Nekor Basin and the Nekor Fault to the south. In the Moroccan shelf and at the edge of a submerged volcano we dated the inception of the local subsidence at 1.81– 1.12 Ma. The subsidence marks the propagation of the AIF toward the Nekor Basin. Pliocene thrusts and folds and Quaternary transtension appear at first sight to act at different tectonic periods but reflect the long-term evolution of a transpressive system. Despite the constant direction of Africa– Eurasia convergence since 6 Ma, along the southern margin of the Alboran Basin, the Pliocene–Quaternary compression evolves from transpressive to transtensive along the AIF and the Nekor Basin. This system reflects the logical evolution of the deformation of the Alboran Basin under the indentation of the African lithosphere.This research has been supported by the CNRSINSU-TOTAL-BRGM-IFREMER Actions Marges program, EUROFLEETS program FP7/2007-2013 (grant no. 228344), EU Regional Structural Fund (grant no. FICTS-2011-03-01) and DAMAGE Project (project no. FEDER/CGL2016-80687-R AEI), Fauces Project (project no. FEDER/CTM2015-65461-C2-R; MINCI), ALBAMAR Project (project no. ANR/ANR-17-CE03-0004)

    Active faulting and earthquakes in the central Alboran Sea

    Get PDF
    Central Alboran Sea constitutes a key area to analyze the relationships between active tectonic structures and moderate seismicity. The heterogeneous crustal layered structure and the propagation of the deformation along the fault zones are key features to relate active faults and seismic hazard. The NW-SE oblique convergence between Eurasian and African plates determines the broad band of tectonic deformation and seismicity along the Alboran Sea basin (westernmost Mediterranean). The Betic-Rif Cordilleras are connected through the Gibraltar Arc and surround the Alboran Sea formed by thinned continental crust. This basin is filled since the Neogene by sedimentary and volcanic rocks. Central Alboran Sea is now undergoing shortening and is mainly deformed by a system of conjugated WNW-ESE dextral and NE-SW sinistral faults with recent activity formed by indenter tectonics related to a heterogeneous crustal behavior. In addition a NNW-SSE normal fault set and large ENE-WSW folds deform the central and northern Alboran Sea. These structures support a present-day N160 E maximum compression and orthogonal extension. In this setting, most of the recent seismicity is concentrated along a NNE-SSW zone that extends landward from Campo de Dalias (SE Spain) to Al Hoceima (Morocco). The Campo de Dalias 1993-1994 seismic crisis reached up to magnitudes Mw= 5.3, while the Al Hoceima area was affected by seismic crisis of 1994 (May 26, Mw=5.6) and 2004 (Feb 24, Mw= 6.4). The main active fault related to the 2004 earthquakes, even that it was a vertical NNE-SSW oriented fault and focal depth was 6 km, did not reach the surface probably due to the presence of a mechanically layered crust. The main active surface faults located in Al Hoceima area (the NNE-SSW transtensional sinistral Trougout fault zone) extended northwards towards the NE-SW sinistral Al Idrissi Fault that intersects the Alboran Sea and are connected with the normal NNW-SSE Balanegra Fault zone. Although these active faults determine most of the seismicity of the central Alboran Sea, the seismic crisis that occurred since January 2016, reaching Mw= 6.3 is located in a region westward of Al Idrissi Fault, underlining the relevance of growth of new faults to determine the seismic hazard of the region. Earthquake focal mechanisms support that the main active fault has a NNE-SSW orientation, similar to Al Idrissi Fault zone. Maximum magnitude suggests a surface rupture length of at least 12 km and a subsurface rupture of 20 km. Propagation of a new fault is more efficient to accumulate elastic deformation, and to produce highest magnitude earthquakes than already formed faults. This new fault is connected probably in deep crustal levels with the blind sinistral fault responsible of the 2004 Al Hoceima earthquake. The tsunami hazard of the region should be consequence of both seabottom displacement due to fault activity and co-seismic submarine landslides. The INCRISIS cruise, scheduled by May 2016, will provide evidences of seabottom effects of this seismic crisis

    Impact of a training project for primary health-care providers (FOCO project) in the HIV screening and HIV late diagnosis

    Get PDF
    Poster [P043] OBJECTIVE Reducing HIV late diagnosis remains an epidemiological challenge . The objective of this project was to promote early HIV diagnosis through the training of primary health - care providers (PHCP) . METHODS HIV specialists conducted training sessions in 108 primary care centers (PCC) from six Spanish regions during 2016 and 2017 , and with 1804 PHCP involved . The intervention was evaluated using a pre - experimental design collecting the dependent variables both in the six months before and after the intervention . Number of requests for HIV tests from the PCC trained and clinical data of new HIV diagnosed patients were collected . Parametric and non - parametric tests were used to assess differences between pre and post - intervention data . RESULTS 3. Differences in clinical variables in pre and post intervention period

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling

    Active fold system in the northern continental margin of the Alboran Sea (Western Mediterranean)

    Get PDF
    En el margen septentrional del Mar de Alborán, la deformación compresiva relacionada con la convergencia entre las placas de Eurasia y Nubia se resuelve mediante una intensa fracturación según dos grandes sistemas de fallas de dirección NNE-SSO con movimiento sinestro y NO-SE de desplazamiento dextral-normal. El análisis estructural de los elementos geomorfológicos presentes en el fondo marino permite establecer, además, una serie de elementos morfológicos generados por la actividad de pliegues anticlinales y sinclinales que conforman una serie de elevaciones de dirección N050-060ºE. Estos pliegues deforman a las unidades sedimentarias superficiales y han sido activos al menos durante el Cuaternario, como lo demuestra el patrón de espesores de las unidades sísmicas afectadas por el plegamiento y la deformación de la superficie erosiva asociada a una terraza contornítica. Este patrón de estructuras se interpreta como generado por la deformación existente sobre una falla de cabalgamiento, vergente hacia el norte, que asume parte de la deformación compresiva causada por la indentación del bloque de la Dorsal de Alborán.In the northern margin of the Alboran Sea, the compressive deformation related to the convergence between the Nubian and Eurasian plates is resolved by an intense fracturing along two large fault systems trending NNE-SSW with left-lateral movements and NW-SE with right-lateral normal components. The structural analysis of the geomorphological elements on the seafloor also allows us to establish a series of morphological elements generated by the activity of some anticline and syncline fold sets. It is basically a series of ridges heading N050-060ºE. These folds deform the shallow sedimentary units and have been active at least during the Quaternary, as evidenced by the thickness pattern of seismic units affected by the folding and the deformation of an erosive surface associated with a contouritic terrace. This pattern of structures is interpreted to be generated by the overlying deformation on a thrust fault, verging towards the north, which assumes part of the compressive deformation caused by the indentation of the Alborán Ridge block.Versión del edito

    Triggering Mechanisms of Tsunamis in the Gulf of Cadiz and the Alboran Sea: An Overview

    Get PDF
    The Gulf of Cadiz and the Alboran Sea are characterized by tectonic activity due to oblique convergence at the boundary between the Eurasian and Nubian plates. This activity has favoured a variety of tsunamigenic sources: basically, seismogenic faults and submarine landslides. The main tsunamigenic faults in the Gulf of Cadiz would comprise the thrust systems of Gorringe Ridge, Marquês de Pombal, São Vicente Canyon, and Horseshoe faults with a high susceptibility; meanwhile in the Alboran Sea would be the thrust system of the northern Alboran Ridge with high susceptibility, and the thrust systems of north Xauen and Adra margin, the transpressive segment of Al Idrissi fault, and the Yusuf-Habibas and Averroes faults, with moderate to high susceptibility. The areas with the greatest potential to generate tsunamigenic submarine landslides are in the Gulf of Cadiz, the São Vicente Canyon, Hirondelle Seamount, and Gorringe Ridge; and in the Alboran Sea are the southern and northern flanks of Alboran Ridge. Both sources are likely to generate destructive tsunamis in the Gulf of Cadiz, given its history of bigger earthquakes (>7 Mw) and larger landslides. To fully assess tsunamigenic sources, further work needs to be performed. In the case of seismogenic faults, research focuses on geometry, offsets, timing, paleoearthquakes, and recurrence, and in landslides on early post-failure evolution, age, events, and recurrence. In situ measurements, paleotsunami records, and long-term monitoring, in addition to major modelling developments, will be also necessary.Versión del edito
    corecore