203 research outputs found

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters ϵ\epsilon and δ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System

    The Cauchy problem for a class of two-dimensional nonlocal nonlinear wave equations governing anti-plane shear motions in elastic materials

    Full text link
    This paper is concerned with the analysis of the Cauchy problem of a general class of two-dimensional nonlinear nonlocal wave equations governing anti-plane shear motions in nonlocal elasticity. The nonlocal nature of the problem is reflected by a convolution integral in the space variables. The Fourier transform of the convolution kernel is nonnegative and satisfies a certain growth condition at infinity. For initial data in L2L^{2} Sobolev spaces, conditions for global existence or finite time blow-up of the solutions of the Cauchy problem are established.Comment: 15 pages. "Section 6 The Anisotropic Case" added and minor changes. Accepted for publication in Nonlinearit

    Macrophage Mal1 Deficiency Suppresses Atherosclerosis in Low-Density Lipoprotein Receptor -Null Mice by Activating Peroxisome Proliferator-Activated Receptor-g-Regulated Genes

    Get PDF
    Cataloged from PDF version of article.Objective-The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results-We transplanted wild-type (WT), Mal1(-/-), or aP2(-/-) bone marrow into low-density lipoprotein receptor-null (LDLR(-/-)) mice and fed them a Western diet for 8 weeks. Mal1(-/-)-> LDLR(-/-) mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT -> LDLR(-/-) mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-gamma (PPAR gamma) activity and upregulation of a PPAR gamma-related cholesterol trafficking gene, CD36. Mal1(-/-) macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1(-/-)-> LDLR(-/-) mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT -> LDLR(-/-) mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1(-/-)-> LDLR(-/-) mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion-Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPAR gamma activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. (Arterioscler Thromb Vasc Biol. 2011;31:1283-1290.

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters is an element of and delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation

    Drying kinetic analysis of municipal solid waste using modified page model and pattern search method

    Get PDF
    This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability

    Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity.

    Get PDF
    The endoplasmic reticulum (ER) is the main site of protein and lipid synthesis, membrane biogenesis, xenobiotic detoxification and cellular calcium storage, and perturbation of ER homeostasis leads to stress and the activation of the unfolded protein response. Chronic activation of ER stress has been shown to have an important role in the development of insulin resistance and diabetes in obesity. However, the mechanisms that lead to chronic ER stress in a metabolic context in general, and in obesity in particular, are not understood. Here we comparatively examined the proteomic and lipidomic landscape of hepatic ER purified from lean and obese mice to explore the mechanisms of chronic ER stress in obesity. We found suppression of protein but stimulation of lipid synthesis in the obese ER without significant alterations in chaperone content. Alterations in ER fatty acid and lipid composition result in the inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress. Correcting the obesity-induced alteration of ER phospholipid composition or hepatic Serca overexpression in vivo both reduced chronic ER stress and improved glucose homeostasis. Hence, we established that abnormal lipid and calcium metabolism are important contributors to hepatic ER stress in obesity

    Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: A cohort study

    Get PDF
    BACKGROUND: We hypothesized that among septic ICU patients with Acinetobacter spp. bacteremia (Ac-BSI), carbapenem-resistant Acinetobacter spp. (CRAc) increase risk for inappropriate initial antibiotic therapy (non-IAAT), and non-IAAT is a predictor of hospital death. METHODS: We conducted a retrospective cohort study of adult septic ICU patients with Ac-BSI. Non-IAAT was defined as exposure to initially prescribed antibiotics not active against the pathogen based on in vitro susceptibility testing, and having no exposure to appropriate antimicrobial treatment within 24 hours of drawing positive culture. We compared patients who died to those who survived, and derived regression models to identify predictors of hospital mortality and of non-IAAT. RESULTS: Out of 131 patients with Ac-BSI, 65 (49.6%) died (non-survivors, NS). NS were older (63 [51, 76] vs. 56 [45, 66] years, p = 0.014), and sicker than survivors (S): APACHE II (24 [19, 31] vs. 18 [13, 22], p < 0.001) and Charlson (5 [2, 8] vs. 3 [1, 6], p = 0.009) scores. NS were also more likely than S to require pressors (75.4% vs. 42.4%, p < 0.001) and mechanical ventilation (75.4% vs. 53.0%, p = 0.008). Both CRAc (69.2% vs. 47.0%, p = 0.010) and non-IAAT (83.1% vs. 59.1%, p = 0.002) were more frequent among NS than S. In multivariate analyses, non-IAAT emerged as an independent predictor of hospital death (risk ratio [RR] 1.42, 95% confidence interval [CI] 1.10-1.58), while CRAc was the single strongest predictor of non-IAAT (RR 2.66, 95% CI 2.43-2.72). CONCLUSIONS: Among septic ICU patients with Ac-BSI, non-IAAT predicts mortality. Carbapenem resistance appears to mediate the relationship between non-IAAT and mortality

    Multidrug resistance, inappropriate empiric treatment and hospital mortality in Acinetobacter baumannii pneumonia and sepsis

    Get PDF
    Background: The relationship between multidrug resistance (MDR), inappropriate empiric therapy (IET), and mortality among patients with Acinetobacter baumannii (AB) remains unclear. We examined it using a large U.S. database. Methods: We conducted a retrospective cohort study using the Premier Research database (2009–2013) of 175 U.S. hospitals. We included all adult patients admitted with pneumonia or sepsis as their principal diagnosis, or as a secondary diagnosis in the setting of respiratory failure, along with antibiotic administration within 2 days of admission. Only culture-confirmed infections were included. Resistance to at least three classes of antibiotics defined multidrug-resistant AB (MDR-AB). We used logistic regression to compute the adjusted relative risk ratio (RRR) of patients with MDR-AB receiving IET and IET’s impact on mortality. Results: Among 1423 patients with AB infection, 1171 (82.3 %) had MDR-AB. Those with MDR-AB were older (63.7 ± 15.4 vs. 61.0 ± 16.9 years, p = 0.014). Although chronic disease burden did not differ between groups, the MDR-AB group had higher illness severity than those in the non-MDR-AB group (intensive care unit 68.0 % vs. 59. 5 %, p < 0.001; mechanical ventilation 56.2 % vs. 42.1 %, p < 0.001). Patients with MDR-AB were more likely to receive IET than those in the non-MDR-AB group (76.2 % MDR-AB vs. 13.8 % non-MDR-AB, p < 0.001). In a regression model, MDR-AB strongly predicted receipt of IET (adjusted RRR 5.5, 95 % CI 4.0–7.7, p < 0.001). IET exposure was associated with higher hospital mortality (adjusted RRR 1.8, 95 % CI 1.4–2.3, p < 0.001). Conclusions: In this large U.S. database, the prevalence of MDR-AB among patients with AB infection was > 80 %. Harboring MDR-AB increased the risk of receiving IET more than fivefold, and IET nearly doubled hospital mortality

    Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation.</p> <p>Methods</p> <p>This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively.</p> <p>Results</p> <p>Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells.</p> <p>Conclusion</p> <p>These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.</p
    corecore