450 research outputs found

    Solar cell

    Get PDF
    A solar cell comprising a semiconductor layer (1), a collecting layer (6) for collecting free charge carriers from the semiconductor layer (1) and a buffer layer (3) which is arranged between the semiconductor layer (1) and the collecting layer (6), which buffer layer (3) is designed as a tunnel contact (31) between the semiconductor layer (1) and the collecting layer (6) is characterised in that the buffer layer (3) essentially comprises a material with a surface charge density of at least 1012 cm-2, preferably of at least 5x1012 cm- 2

    CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol

    Get PDF
    International audienceThe ability of secondary organic aerosol (SOA) produced from the ozonolysis of ?-pinene and monoterpene mixtures (?-pinene, ?-pinene, limonene and 3-carene) to become cloud droplets was investigated. Monoterpene SOA is quite active and would likely be a good source of cloud condensation nuclei (CCN) in the atmosphere. A static CCN counter and a Scanning Mobility CCN Analyser (a Scanning Mobility Particle Sizer coupled with a Continuous Flow counter) were used for the CCN measurements. A decrease in CCN activation diameter for ?-pinene SOA of approximately 3 nm h?1 was observed as the aerosol continued to react with oxidants. Hydroxyl radicals further oxidize the SOA particles thereby enhancing the particle CCN activity with time. The initial concentrations of ozone and monoterpene precursor (for concentrations lower than 40 ppb) do not appear to affect the activity of the resulting SOA. Köhler Theory Analysis (KTA) is used to infer the molar mass of the SOA sampled online and offline from atomized filter samples. KTA suggests that the aged aerosol (both from ?-pinene and the mixed monoterpene oxidation) is primarily water-soluble (around 70?80%), with an estimated average molar mass of 180±55 g mol?1 (consistent with existing SOA speciation studies). CCN activity measurements of the SOA mixed with (NH4)2SO4 suggest that the organic can depress surface tension by as much as 10 nM m?1 (with respect to pure water). The droplet growth kinetics of SOA samples are similar to (NH4)2SO4, except at low supersaturation, where SOA tends to grow more slowly. The CCN activity of ?-pinene and mixed monoterpene SOA can be modelled by a very simple implementation of Köhler theory, assuming complete dissolution of the particles, no dissociation into ions, molecular weight of 180 g mol?1, density of 1.5 g cm?3, and surface tension to within 10?15% of water

    A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface

    Get PDF
    We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface

    Comparison between Al2O3 surface passivation films deposited with thermal ALD, plasma ALD and PECVD

    Get PDF
    Surface passivation schemes based on Al2O3 have enabled increased efficiencies for silicon solar cells. The key distinguishing factor of Al2O3 is the high fixed negative charge density (Qf = 1012-1013 cm-2), which is especially beneficial for p- and p+ type c-Si, as it leads to a high level of field-effect passivation. Here we discuss the properties of Al2O3 surface passivation films synthesized with plasma atomic layer deposition (ALD), thermal ALD (using H2O as oxidant) and PECVD. We will show that with all three methods a high level of surface passivation can be obtained for Al2O3 deposited at substrate temperatures in the range of 150-250oC. Furthermore, the role of chemical and field-effect passivation will be briefly addressed. It is concluded that the passivation performance of Al2O3 is relatively insensitive to variations in structural properties. Al2O3 is therefore a very robust solution for silicon surface passivation

    PHP24 USE OF POLICY MODELING TO PROMOTE INFORMED DECISION MAKING: DEVELOPMENT AND APPLICATION OF THE CANADIAN STROKE POLICY MODEL

    Get PDF

    Relating CCN activity, volatility, and droplet growth kinetics of ?-caryophyllene secondary organic aerosol

    No full text
    International audienceThis study investigates the droplet formation characteristics of secondary organic aerosol (SOA) formed during the ozonolysis of sesquiterpene ?-caryophyllene (with and without hydroxyl radicals present). Emphasis is placed on understanding the role of semi-volatile material on Cloud Condensation Nucleus (CCN) activity and droplet growth kinetics. Aging of ?-caryophyllene SOA significantly affects all CCN-relevant properties measured throughout the experiments. Using a thermodenuder and two CCN instruments, we find that CCN activity is a strong function of temperature (activation diameter at ~0.6% supersaturation: 100±10 nm at 20°C and 130±10 nm at 35°C), suggesting that the hygroscopic fraction of the SOA is volatile. The water-soluble organic carbon (WSOC) is extracted from the SOA and characterized with Köhler Theory Analysis (KTA); the results suggest that the WSOC is composed of low molecular weight (?1) slightly surface-active material that constitute 5?15% of the SOA mass. These properties are similar to the water-soluble fraction of monoterpene SOA, suggesting that predictive understanding of SOA CCN activity requires knowledge of the WSOC fraction but not its exact speciation. Droplet growth kinetics of the CCN are found to be strongly anticorrelated with WSOC fraction, suggesting that the insoluble material in the SOA forms a kinetic barrier that delays droplet growth. These results have important implications for the droplet formation characteristics of SOA, and the atmospheric relevance of CCN measurements carried out at temperatures different from ambient

    Organic Pollutants, Heavy Metals and Toxicity in Oil Spill impacted Salt Marsh Sediment Cores, Staten Island, New York City, USA

    Get PDF
    Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400–700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20–50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway

    Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    Get PDF
    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. <br><br> Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. <br><br> The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NO<sub>x</sub> conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder
    • …
    corecore