872 research outputs found

    Increased bacterial growth efficiency with environmental variability: results from DOC degradation by bacteria in pure culture experiments.

    Get PDF
    This paper assesses how considering variation in DOC availability and cell maintenance in bacterial models affects Bacterial Growth Efficiency (BGE) estimations. For this purpose, we conducted two biodegradation experiments simultaneously. In experiment one, a given amount of substrate was added to the culture at the start of the experiment whilst in experiment two, the same amount of substrate was added, but using periodic pulses over the time course of the experiment. Three bacterial models, with different levels of complexity, (the Monod, Marr-Pirt and the dynamic energy budget – DEB – models), were used and calibrated using the above experiments. BGE has been estimated using the experimental values obtained from discrete samples and from model generated data. Cell maintenance was derived experimentally, from respiration rate measurements. The results showed that the Monod model did not reproduce the experimental data accurately, whereas the Marr-Pirt and DEB models demonstrated a good level of reproducibility, probably because cell maintenance was built into their formula. Whatever estimation method was used, the BGE value was always higher in experiment two (the periodically pulsed substrate) as compared to the initially one-pulsed-substrate experiment. Moreover, BGE values estimated without considering cell maintenance (Monod model and empirical formula) were always smaller than BGE values obtained from models taking cell maintenance into account. Since BGE is commonly estimated using constant experimental systems and ignore maintenance, we conclude that these typical methods underestimate BGE values. On a larger scale, and for biogeochemical cycles, this would lead to the conclusion that, for a given DOC supply rate and a given DOC consumption rate, these BGE estimation methods overestimate the role of bacterioplankton as CO<sub>2</sub> producers

    Risk of recurrence after a first unprovoked venous thromboembolism : external validation of the Vienna Prediction Model with pooled individual patient data

    Get PDF
    Background: In order to stratify patients with a first unprovoked venous thromboembolism (VTE) according to their recurrence risk and to identify those who would actually benefit from indefinite anticoagulation, three prediction models have been developed so far; none of them has been yet externally validated. Objective: To externally validate the Vienna Prediction Model (VPM), a prediction guide for estimating the recurrence risk after a first unprovoked VTE developed through Cox modeling and including sex, D-dimer and index VTE site as predictors. Patients/Methods: Nine hundred and four patients pooled from five prospective studies evaluating the prognostic value of D-dimer for VTE recurrence served as the validation cohort. The validity of the VPM in stratifying patients according to their relative recurrence risk (discrimination) and in predicting the absolute recurrence risk (calibration) was tested with survival analysis methods. Results: The ability of the VPM to distinguish patients' risk for recurrent VTE in the validation cohort was at least as good as in the original cohort, with a calibration slope of 1.17 (95% confidence interval 0.71-1.64; P\ua0=\ua00.456 for the hypothesis of a significant difference from 1), and a c-statistic of 0.626 (vs. 0.651 in the original derivation cohort). The VPM absolute predictions in terms of cumulative rates tended to underestimate the observed recurrence rates at 12\ua0months. Conclusions: By using a pooled individual patient database as a validation cohort, we confirmed the ability of the VPM to stratify patients with a first unprovoked VTE according to their risk of recurrence

    Increased plasma vaspin concentration in patients with sepsis: an exploratory examination

    Get PDF
    Introduction: Vaspin (visceral adipose tissue-derived serpin) was first described as an insulin-sensitizing adipose tissue hormone. Recently its anti-inflammatory function has been demonstrated. Since no appropriate data is available yet, we sought to investigate the plasma concentrations of vaspin in sepsis. Materials and methods: 57 patients in intensive care, fulfilling the ACCP/SCCM criteria for sepsis, were prospectively included in our exploratory study. The control group consisted of 48 critically ill patients, receiving intensive care after trauma or major surgery. Patients were matched by age, sex, weight and existence of diabetes before statistical analysis. Blood samples were collected on the day of diagnosis. Vaspin plasma concentrations were measured using a commercially available enzyme-linked immunosorbent assay. Results: Vaspin concentrations were significantly higher in septic patients compared to the control group (0.3 (0.1-0.4) ng/mL vs. 0.1 (0.0-0.3) ng/mL, respectively; P < 0.001). Vaspin concentration showed weak positive correlation with concentration of C-reactive protein (CRP) (r = 0.31, P = 0.002) as well as with SAPS II (r = 0.34, P = 0.002) and maximum of SOFA (r = 0.39, P < 0.001) scoring systems, as tested for the overall study population. Conclusion: In the sepsis group, vaspin plasma concentration was about three-fold as high as in the median surgical control group. We demonstrated a weak positive correlation between vaspin and CRP concentration, as well as with two scoring systems commonly used in intensive care settings. Although there seems to be some connection between vaspin and inflammation, its role in human sepsis needs to be evaluated further

    Convective scaling of the average dissipation rate of temperature variance in the atmospheric surface layer

    Get PDF
    The flux of sensible heat from the land surface is related to the average rate of dissipation of temperature fluctuations in the atmospheric surface layer through the temperature variance budget equation. In many cases it is desirable to estimate the heat flux from measurement or inference of the dissipation rate. Here we study how the dissipation rate scales with atmospheric stability, using three inertial range methods to calculate the dissipation rate: power spectra, second order structure functions, and third order structure functions. Experimental data are analyzed from a pair of field experiments, during which turbulent fluctuations of velocity and temperature were measured over a broad range of neutral and unstable atmospheric flows. It is shown that the temperature dissipation rate scales with a single convective power law continuously from near-neutral to strongly unstable stratification. The dissipation scaling is found to nearly match production in the near-neutral region, but to be consistently lower than production in the more convective regimes. The convective scaling is shown to offer a simplified means of computing sensible heat flux from the dissipation rate of temperature variance

    Increased plasma zonulin in patients with sepsis

    Get PDF
    Introduction: Zonulin is a eukaryotic protein structurally similar to Vibrio cholerae’s zonula occludens toxin. It plays an important role in the opening of small intestine tight junctions. The loss of gut wall integrity during sepsis might be pivotal and has been described in various experimental as well as human studies. Increased levels of zonulin could be demonstrated in diseases associated with increased intestinal inflammation, such as celiac disease and type 1 diabetes. We therefore investigated the role of plasma levels of zonulin in patients with sepsis as a non-invasive marker of gut wall integrity. Materials and methods: Plasma level of zonulin was measured in 25 patients with sepsis, severe sepsis or septic shock according to ACCP/SCCM criteria at the first day of diagnosed sepsis. 18 non-septic post-surgical ICU-patients and 20 healthy volunteers served as control. Plasma levels were determined by using commercially available ELISA kit. Data are given as median and interquartile range (IQR). Results: Significantly higher plasma concentration of zonulin were found in the sepsis group: 6.61 ng/mL (IQR 3.51-9.46), as compared to the to the post-surgical control group: 3.40 ng/mL (IQR 2.14-5.70) (P = 0.025), as well as to the healthy group: 3.55 ng/mL (IQR 3.14-4.14) (P = 0.008). Conclusion: We were able demonstrate elevated levels of plasma zonulin, a potential marker of intestinal permeability in septic patients. Increased zonulin may serve as an additional mechanism for the observed increased intestinal permeability during sepsis and SIRS

    Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs

    Get PDF
    Defect localisation is essential in software engineering and is an important task in domain-specific data mining. Existing techniques building on call-graph mining can localise different kinds of defects. However, these techniques focus on defects that affect the controlflow and are agnostic regarding the dataflow. In this paper, we introduce dataflow-enabled call graphs that incorporate abstractions of the dataflow. Building on these graphs, we present an approach for defect localisation. The creation of the graphs and the defect localisation are essentially data mining problems, making use of discretisation, frequent subgraph mining and feature selection. We demonstrate the defect-localisation qualities of our approach with a study on defects introduced into Weka. As a result, defect localisation now works much better, and a developer has to investigate on average only 1.5 out of 30 methods to fix a defect
    • …
    corecore