
Software-Defect Localisation by Mining
Dataflow-Enabled Call Graphs

Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Böhm

Karlsruhe Institute of Technology (KIT), Germany
{eichinger, krogmann, klemens.boehm}@kit.edu, klugr@ipd.uka.de

Abstract. Defect localisation is essential in software engineering and is
an important task in domain-specific data mining. Existing techniques
building on call-graph mining can localise different kinds of defects. How-
ever, these techniques focus on defects that affect the controlflow and are
agnostic regarding the dataflow. In this paper, we introduce dataflow-
enabled call graphs that incorporate abstractions of the dataflow. Build-
ing on these graphs, we present an approach for defect localisation. The
creation of the graphs and the defect localisation are essentially data
mining problems, making use of discretisation, frequent subgraph min-
ing and feature selection. We demonstrate the defect-localisation quali-
ties of our approach with a study on defects introduced into Weka. As
a result, defect localisation now works much better, and a developer has
to investigate on average only 1.5 out of 30 methods to fix a defect.

1 Introduction

Software quality is a huge concern in industry and in the software-engineering
community. Software is rarely free from defects, and finding them is difficult.
Especially when projects are large, several developers make changes in the source
code, and a developer works with code somebody else has written, localising
defects is tedious. (Semi-)Automatic tools for defect localisation are desirable.
Clearly, such tools should be able to deal with many different kinds of defects.

In the past years, a number of studies has investigated defect localisation with
graph-mining techniques [3, 5, 7, 8, 18]. They build on the analysis of dynamic
call graphs (see [6] for an overview). One such graph is a concise representation
of a programme execution and reflects the method-invocation structure. The
localisation techniques do frequent subgraph mining with call graphs of correct
and of failing executions. The rationale for defect localisation is that patterns
occurring more frequently in graphs of failing executions contain methods which
are more likely to be defective. Techniques that incorporate the analysis of call
frequencies have proven to be more accurate and discover more types of defects
than techniques without this feature [7]. See Figure 1 for a simple call graph
representing a programme execution – each node stands for a method, edges
represent method calls, and edge weights represent method-call frequencies.

An important characteristic of the existing call-graph-based techniques is
that they merely analyse the call-graph structure and the call frequencies. They

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197553887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

void main()
void a()

67

void b()
2 5

int c(int p1, int p2)
3

Fig. 1. Example call graph with call frequencies (not dataflow enabled).

can only localise defects which affect the call graph of a programme execution
(simplified, the controlflow). While this is an important class of defects, Cheng
et al. [3] point out that the current techniques are agnostic regarding defects
that influence the dataflow. We refer to such defects as dataflow-affecting bugs.
They influence the data exchanged between methods. For example, think of a
method which wrongly calculates some value, and which needs to be localised. A
call-graph-based technique can only recognise such a defect if the value affects a
control statement. Although this happens frequently, it might occur in methods
which are actually defect-free, leading to erroneous localisations.

Han and Gao identify software engineering and defect localisation as a ma-
jor area in domain-specific data mining [9]. They point out that the integration
of domain knowledge (in our case, the exact specification of call graphs) and
dedicated analysis techniques are crucial for the success of data mining in any
domain. In this paper, we present a call-graph-based technique which localises
both dataflow-affecting and call-graph-affecting bugs. The specification of the
underlying graphs is not obvious: On the one hand, a call graph is a compact
representation of an execution. On the other hand, dataflow-related information
refers to values of many method calls within one execution. This information
needs to be available at a level of detail which allows to locate defects. To il-
lustrate the difficulties, an edge in a call graph typically represents thousands
to millions of method calls. Annotating each edge with the method-call parame-
ters and method-return values of all invocations corresponding to it incurs huge
annotations and is not practical. In this paper we propose dataflow-enabled call
graphs (DEC graphs) which incorporate concise numeric dataflow information.

DEC graphs are augmentations of call graphs with abstractions of method-
call parameters and of method-return values. To obtain DEC graphs, we treat
different data types differently. In particular, we discretise numerical parameter
and return values. Figure 2 is a DEC graph corresponding to Figure 1. The call
from method b to method c is attributed with a tuple of integers, containing
the total number of calls and the numbers of calls with parameter and return
values falling into different intervals. (We explain the details later.) When the
DEC graphs are assembled, we do frequent subgraph mining with the graphs,
not considering the dataflow abstractions for the moment. We then analyse the
tuples of integers assigned to the edges with a feature-selection algorithm in the
different subgraphs mined separately. Finally, we derive a likelihood of defective-
ness for every method in the programme considered. These likelihoods form a
ranking of suspicious methods which can guide the manual debugging process.
We demonstrate the appropriateness and precision of our DEC-graph-based ap-

void main()
void a()

67

void b()
2 5

int c(int p1, int p2)
3, 3, 0, 1, 0, 2, 0, 3

Fig. 2. Example dataflow-enabled call graph (DEC graph).

proach for the localisation of defects. In a case study we evaluate the approach
using defects introduced into the Weka machine-learning suite [23].

All in all, our new technique for defect localisation features contributions at
different stages of the analysis process and in the application domain:
Dataflow-Enabled Call Graphs. We introduce DEC graphs as sketched be-
fore, featuring dataflow abstractions. We describe an efficient implementation of
their generation for Java programmes. To the best of our knowledge, this is the
first study considering the dataflow within call graphs for defect localisation.
A Defect-Localisation Approach for Dataflow-Affecting Bugs. We pre-
sent a defect localisation technique for DEC graphs. It is a case of weighted
graph mining, which ultimately identifies defective methods.
Results in Software Engineering. We demonstrate the usefulness of our
approach by means of defect-localisation experiments. Localisation works better
with DEC graphs, as compared to graphs that are not dataflow enabled. Some
defects can only be localised well with DEC graphs. Further, we describe and
evaluate extensions of our approach which improve the defect localisation.

Paper Outline: Section 2 introduces the fundamentals of call-graph-based
defect localisation. Sections 3 and 4 introduce DEC graphs and explain how we
use them for defect localisation. Section 5 contains the experimental evaluation,
Section 6 discusses related work, and Section 7 concludes.

2 Fundamentals of Call-Graph-Based Defect Localisation

In this section we first introduce our notion of bugs, followed by fundamentals
on call-graph-based defect localisation.
Types of Bugs in Software. In the field of debugging, one usually avoids
the terms bug and fault, but distinguishes between defects, infections and fail-
ures [26]. In this frequently-cited classification, defects are the places in the
source code which cause a problem, an infection is an incorrect programme
state (usually triggered by a defect), and failures are an observable incorrect
programme behaviour (e.g., a user experiences wrong calculations). In the con-
text of our study, we use a further differentiation, introduced in [6]:

– Crashing bugs lead to an unexpected termination of a programme. Exam-
ples include null-pointer exceptions and divisions by zero, which in various
programming languages are easy to localise with the help of a stack trace.
Non-crashing bugs in turn display failing behaviour but do not provide any

hints. Non-crashing bugs are hard to localise and thus in the focus of graph-
mining-based defect-localisation approaches.

– Occasional bugs are failures whose occurrence depends on the input data of
a programme. Compared to non-occasional bugs, occasional bugs are harder
to find since they require more test cases to be reproduced.

– Structure-affecting bugs are infections which change the structure of a call
graph. This is, when comparing graphs from correct and failing executions,
certain graph substructures might or might not occur in either of the two
variants. Such infections typically occur when if statements have defects
or contain infected variables. In contrast, call-frequency-affecting bugs are
infections which change the call frequency of a certain substructure in fail-
ing executions, rather than completely missing or adding structures. Such
infections typically occur when loops are involved. Both structure-affecting
and call-frequency-affecting bugs are also called call-graph-affecting bugs.

As any call-graph-based technique, we focus on non-crashing and occasional
bugs. Opposed to other techniques, we consider dataflow-affecting bugs besides
call-graph-affecting bugs. Dataflow-affecting bugs manifest themself by infected
method-call parameters or return values, i.e., a method returns a wrong value.
Dataflow-affecting bugs might affect the structure of a call graph and/or the
call frequencies as a side effect. In this case, existing techniques can locate the
defects in principle. However, infected behaviour often appears in other methods
then those with the actual defect. This might disturb defect localisation. In such
cases, our dataflow-enabled technique can deliver more precise localisations.
Localising Call-Graph-Affecting Bugs. In the past years, a number of call-
graph-based techniques for defect localisation have been proposed [3, 5, 7, 8, 18].
Their basic idea is to mine for patterns in the call graph which are characteristic
for failing executions. Then, they derive some defectiveness likelihood for the
methods. We now briefly review the different call graph variants used, as well as
the corresponding defect-localisation techniques. [6] is a detailed survey.

Existing techniques focus on structure-affecting bugs [3, 5, 7, 18] and call-
frequency-affecting bugs [7, 8]. The graphs in [3, 5, 18] incorporate temporal in-
formation, the ones in [7, 8] do not. In [6, 7] we explain that the increased graph
size when temporal information is incorporated leads to scalability issues when
it comes to the mining. [3, 8, 18] build on call graphs where exactly one node rep-
resents a method, while [5, 7] allow for more than one node. This promises more
precise results, as more detailed contexts of method calls can be included in the
analysis. At the same time, the size of the graphs increases, which also tends to
increase runtime [6]. In contrast to the other representations, the graphs in [7, 8]
are weighted. Edge weights represent the number of corresponding method calls.

Besides different graph representations, the different approaches derive de-
fectiveness likelihoods in different ways. [18] builds on graph classification with
subgraph patterns. The authors first mine frequent subgraph patterns with a
variant of CloseGraph [25] before they use them to train a support-vector ma-
chine (SVM). The authors consider the difference in accuracy between two SVMs
– one built with graph patterns including a certain method and one without them

– as an evidence for defective methods. [3] builds on the same graphs, but relies
on discriminative subgraph mining with the LEAP algorithm [24]. This directly
pinpoints suspicious subgraph-structures and thus methods that are possibly de-
fective. [5] derives defect likelihoods from support values of subgraph patterns
in call graphs. Finally, [7] combines the idea from [5] to use support-based struc-
tural likelihoods with the analysis of call frequencies. While [5] incorporates only
basic frequency-related information, [7, 8] analyse call frequencies by means of a
feature-selection algorithm. It does so in a step subsequent to graph mining with
the CloseGraph algorithm [25]. This analysis allows to localise call-frequency-
affecting and structure-affecting bugs. In [8] we successfully investigate the usage
of call graphs for the localisation of defects in multithreaded programmes.

In this paper, we borrow concepts from both graph representations and local-
isation techniques from previous work. However, our graphs and our technique
are different as they are tailored for the localisation of dataflow-affecting bugs –
which is new in this study – in addition to call-graph-affecting ones. The shape
of our graphs is similar to those in [3, 8, 18], but without temporal information.
Furthermore, we generalise the concept of edge weights and their analysis [7, 8]
by introducing tuples of weights incorporating dataflow abstractions.

3 Dataflow-Enabled Call Graphs (DEC Graphs)

In this section we introduce and specify dataflow-enabled call graphs (DEC
graphs) and explain how we obtain them. These graphs and their analysis (de-
scribed in the following section) are the core of our approach to localise dataflow-
affecting bugs. The basic idea of DEC graphs is to extend edges in call graphs
with tuples which are abstractions of method parameters and return values.
Obtaining these abstractions is a data-mining problem by itself: Huge amounts
of values from method-call monitoring need to be condensed to enable a later
analysis and ultimately the localisation of defects. We address this problem by
means of discretisation. In the following, we first explain how we derive pro-
gramme traces from programme executions. Next, we describe the structure of
our call graphs. We then explain the dataflow abstractions and explain why they
are useful for defect localisation. Finally, we say how we obtain the graphs from
programme traces and give a concrete example.
Derivation of Programme Traces. We employ the aspect-oriented program-
ming language AspectJ [13] to weave tracing functionality into Java programmes.
By defining so-called pointcuts in AspectJ, we instrument method calls. At each
call, we insert logging statements which save caller-callee relations. For each in-
vocation, we log call frequency and data values (parameters and return values)
that occur at runtime. Finally, we use this data to build call graphs.

When logging data values, we log primitive data types as they are, capture
arrays and collections by their size, and reduce strings to their length. Such an
abstraction from concrete dataflow has before successfully been used in the area
of software performance prediction, e.g. [14]. Certainly, these simplifications can
be severe, but logging the full data would result in overly large amounts of data.

Our evaluation (Section 5) primarily studies primitive data types. A systematic
evaluation of arrays, collections and strings as well as techniques for complex
data types is subject to future work.
Call-Graph Structure. Based on the experience from previous studies [6], we
decide to make use of a total-reduction variant of call graphs. This allows for
better scalability of mining algorithms for large software projects and for an
on-the-fly generation. In such graphs, every individual method which is called
during a programme execution forms a single node (see Figure 1 for an example).
Dataflow Abstractions. As mentioned before, we use discretisation in order to
find an abstraction of method parameters and return values based on the values
monitored. Discretisation gives us a number of intervals for every parameter and
for the return value (we discuss respective techniques in the following). We then
count the number of method invocations falling into the intervals determined
and attribute these counts to the edges.

Definition 1. An edge-weight tuple in a dataflow-enabled call graph (DEC
graph) consists of the counts of method calls falling into the respective intervals:

(t, pi11 , p
i2
1 , ..., p

in1
1 , pi12 , p

i2
2 , ..., p

in2
2 , ..., pi1m, pi2m, ..., p

inm
m , ri1 , ri2 , ..., rinr)

where t is the total number of calls, p1, p2, ..., pm are the method-call parameters,
r is the method-return value and i1, i2, ..., inx

(nx denotes the number of intervals
of parameter/return value x) are the intervals of the parameters/return values.

The idea is that values referring to an infection tend to fall into different
intervals than values which are not infected. For example, infected values might
always be lower than correct values. Alternatively, infected values might be out-
liers which do not fall into the intervals of correct values as well. In order to
be suited for defect localisation, intervals must respect correct and failing pro-
gramme executions as well as distributions of values. Generally, it might be
counter-productive to divide a value range like integer into intervals of equal
size. Groups of close-by values of the same class might fall into different inter-
vals, which would complicate defect localisation.
Derivation of Dataflow-Enabled Call Graphs (DEC Graphs). The CAIM
(class-attribute interdependence maximisation) algorithm [15] suits our require-
ments for intelligent discretisation: It (1) discretises single numerical attributes,
(2) takes classes associated with tuples into account (i.e., correct and failing
executions in our scenario) and (3) automatically determines a (possibly) mini-
mal number of intervals. Internally, the algorithm maximises the attribute-class
interdependence. Comparative experiments by the CAIM inventors have demon-
strated a high accuracy in classification settings.

In concrete terms, we let CAIM find intervals for every method parameter and
return value of every method call corresponding to a certain edge. We do so for
all edges in all call graphs belonging to the programme executions considered.
We then assemble the edge-weight tuples as described in Definition 1. Exam-
ple 1 illustrates the discretisation. As we are faced with millions of method calls
from hundreds to thousands of programme executions, frequently consisting of

duplicate values, we pre-aggregate values during the execution. To avoid scal-
ability problems, we then utilise a proprietary implementation of CAIM which
is able to handle large amounts of data in pre-aggregated form. Note that the
dataflow abstractions in DEC graphs can only be derived for a set of executions,
as discretisation for a single execution is not meaningful.

Example 1. We consider the call of method c from method b in Figure 1 (Exec. 1
in Table 1) and three further programme executions (Exec. 2–4) invoking the
same method with a frequency of one to three. Method c has two parameters p1,
p2 and returns value r. A discretisation of p1, p2 and r based on the example val-
ues given in Table 1(a) leads to two intervals of p1 and r (pi11 , p

i2
1 and ri1 , ri2) and

three for p2 (pi12 , p
i2
2 , p

i3
2). See Table 1(b) for the exact intervals. The occurrences

of elements of edge-weight tuples can then be counted easily – see Table 1(c),
the discretised version of Table 1(a). The edge-weight tuple of b→ c in Exec. 1
then is as displayed in Figure 2, referring to (t, pi11 , p

i2
1 , p

i1
2 , p

i2
2 , p

i3
2 , r

i1 , ri2).

(a) Example call data.

Exec. p1 p2 r class

1 2 43 12 correct
1 1 44 11 correct
1 3 4 9 correct

2 12 33 8 failing

3 23 27 6 failing
3 15 28 5 failing
3 16 23 7 failing

4 6 2 10 correct
4 11 47 13 correct

(b) Intervals generated.

Value Intervals

p1
i1 : [1, 11.5]
i2 : (11.5, 23]

p2

i1 : [2, 13.5]
i2 : (13.5, 38]
i3 : (38, 47]

r
i1 : [5, 8.5]
i2 : (8.5, 13]

(c) Discretised data.

Exec. p1 p2 r

1 i1 i3 i2
1 i1 i3 i2
1 i1 i1 i2
2 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
4 i1 i1 i2
4 i1 i3 i2

Table 1. Example discretisation for the call of int c(int p1, int p2) from b.

4 Localising Dataflow-Affecting Bugs

We now explain how to derive defect localisations from DEC graphs. We first
give an overview, then describe subgraph mining (Section 4.1) and the actual
defect localisation (Section 4.2) and two extensions (Sections 4.3 and 4.4).
Overview. Algorithm 1 works with a set of traces T of programme executions.
At first, it assigns a class (correct , failing) to every trace t ∈ T (Line 3), using
a test oracle. Then the procedure generates DEC graphs from every trace t
(Line 4). Next, the procedure derives frequent subgraphs of these graphs which
are used as contexts where defects are located (Line 6). The last step calculates
a likelihood of containing a defect for every method m (Line 7). This facilitates a
ranking of the methods, which can be given to software developers. They would
then review the suspicious methods manually, starting with the one which is
most likely to be defective.

Algorithm 1 Procedure of defect localisation with DEC graphs.

Input: a set of programme traces t ∈ T
Output: a method ranking based on each method’s likelihood to be defective P (m)
1: G = ∅ // initialise a set of DEC graphs
2: for all traces t ∈ T do
3: check if t was a correct execution and assign a class ∈ {correct , failing} to t
4: G = G ∪ {derive dataflow-enabled call graph(t)}
5: end for
6: SG = frequent subgraph mining(G)
7: calculate P (m) for all methods m; based on SG

4.1 Frequent Subgraph Mining

As shown in Line 6 in Algorithm 1, we use frequent subgraph mining to derive
subgraphs which are frequent within the call graphs considered. This particular
step mines the pure graph structure only and ignores the edge-weight-tuples for
the moment. The subgraphs obtained serve as different contexts, and further
analyses are done for every subgraph context separately. This aims at a higher
precision than an analysis without such contexts. For example, a failure might
occur when method a is called from method b, only when method c is called
as well. Then, the defect might be localised only in call graphs containing all
methods mentioned, but not in graphs without method c.

We rely on the ParSeMiS implementation [21] of CloseGraph [25] for frequent
subgraph mining. CloseGraph has successfully been used in related studies [7, 18].
In a set of graphs G, it discovers subgraphs with a user-defined minimum support.
For this value, we use min(|Gcorr|, |Gfail|)/2, where Gcorr and Gfail are the sets of
call graphs of correct and failing executions, respectively (G = Gcorr∪Gfail). This
ensures not to miss any structure which occurs in less then half of all executions
belonging to the smaller class. Preliminary experiments have shown that this
minimum support allows for both short runtimes and good results.

4.2 Entropy-Based Defect Localisation

Next, we calculate the likelihood that a method contains a defect (Line 7 in
Algorithm 1). The rationale is to identify methods which call other methods
with discriminative parameter values or which have return values discriminating
well between correct and failing executions. As mentioned before, we analyse
every edge-weight tuple in the DEC graphs in the context of every subgraph
mined. This aims at a high probability to actually reveal a defect, as every tuple
is typically investigated in many different contexts. We assemble a table which
contains the elements of the tuples of all edges in all subgraphs as columns
and all programme executions (represented by their DEC graphs) as rows. The
table cells contain the tuple values: the total call frequencies t and normalised
interval frequencies. More precisely, we divide every interval frequency by the
corresponding t in order to obtain the ratio of calls falling into each interval.

Exec.
sg1 sg2

· · · classmain→ b b→ c main→ a

t t
p
i1
1
t

p
i2
1
t

p
i1
2
t

p
i2
2
t

p
i3
2
t

ri1

t
ri2

t
t

g1 2 3 1.00 0.00 0.33 0.00 0.67 0.00 1.00 67 · · · correct
...

...
...

...
...

...
...

...
...

...
...

. . .
...

gn 2 9 1.00 0.00 0.33 0.00 0.67 0.67 0.33 0 · · · failing

Table 2. Example feature table. g1 refers to Exec. 1 from Example 1 (Figure 2).

Table 2 is an example table which assumes that two subgraphs were found
in the previous graph mining step, sg1 (main → b → c) and sg2 (main → a).
The first column lists the call graphs g ∈ G. The second column corresponds
to sg1 and edge main → b with the total call frequency t. The following eight
columns correspond to the second edge in this subgraph. Besides the total call
frequency t, these columns represent intervals and are derived from the frequen-
cies of parameter and return values. The very last column contains the class
correct or failing . If a certain subgraph is not contained in a call graph, the
corresponding cells have value 0, like gn , which does not contain sg2 .

After assembling the table, we employ the information-gain-ratio feature-
selection algorithm (GainRatio, [22]) in its Weka implementation [23] to calculate
the discriminativeness of the columns and thus of the different edge-weight-tuple
values. The GainRatio is a measure from information theory and builds – similar
to information gain – on entropy. Values of GainRatio are in the interval [0, 1].
High values indicate a table column affected by a defect. Previous work [7, 8] has
shown that entropy-based measures are well-suited for defect localisation.

So far, we have derived defect likelihoods for every column in the table.
However, we are interested in likelihoods for methods m, and every method
corresponds to more than one column in general. This is due to the fact that a
method can call several other methods and might itself be invoked from various
other methods, in the context of different subgraphs. Furthermore, methods
might have several parameters and a return value, each with possibly several
intervals. To obtain method likelihood P (m), we assign every column containing
a total frequency t or a parameter-interval frequency pi to the calling method and
every return-value-interval frequency ri to the callee method. We then calculate
P (m) as the maximum of the GainRatio values of the columns assigned to
method m. By doing so, we identify the defect likelihood of a method by its
most suspicious invocation and the most suspicious element of its tuple. Other
invocations are less important, as they might not be related to a defect. The call
context of a likely defective method and suspicious data values are supplementary
information which we report to software developers to ease debugging.

Example 2 illustrates how our technique is able to localise dataflow-affecting
bugs based on the ratios of executions falling into the different intervals of the
method parameters and return values. Furthermore, it localises call-frequency-
affecting bugs based on the call frequencies in the edge-weight tuples. In addition,

our technique is able to localise most structure-affecting bugs as well: (1) The call
structure is implicitly contained in the feature tables (e.g., Table 2) – value 0 in-
dicates subgraphs not supported by an execution. (2) Such defects are frequently
caused by control statements (e.g., if) evaluating previously wrongly calculated
values. Our analysis based on dataflow can detect such situations more directly.

Example 2. The graphs g1 and gn in Table 2 display very similar values, but refer
to a correct and a failing execution. Assume that method c contains a defect
which occasionally leads to a wrongly calculated return value. This is reflected in

the columns ri1

t and ri2

t of b→ c in sg1 . The GainRatio measure will recognise
fluctuating values in these columns, leading to a high ranking of method c.

4.3 Follow-Up-Infection Detection

Call graphs of failing executions frequently contain infection-like patterns which
are caused by a preceding infection (not a defect). We call such patterns follow-
up infections. We now describe an extension (for Line 7 in Algorithm 1) which
detects certain follow-up infections and enhances the method ranking.

A follow-up infection occurs when a defective method m1 calls another meth-
od m2 which in turn calls method m3. m1 can often be localised because of the
call frequency associated with edge m1 → m2. However, m2 → m3 might have a
call frequency proportional to m1 → m2. Thus, m2 will have the same GainRatio
as m1. We make use of this observation and remove methods within the same
subgraph belonging to m2 → m3 from the ranking when the following condi-
tions hold: (1) GainRatio(m1 → m2) = GainRatio(m2 → m3) (we consider the
GainRatio values from columns belonging to total call frequencies and param-
eters), and (2) m1 → m2 → m3 is not part of a cycle within any g ∈ G. (2) is
necessary as the origin of an infection cannot be determined within a cycle. How-
ever, our detection is a heuristic which is helpful in practice (see Section 5). In
the presence of noise, this follow-up-infection detection might not work, and –
pathologically – two edges might have the same GainRatio value by chance.

4.4 Improvements for Structure-Affecting Bugs

The subgraphs mined in Line 6 in Algorithm 1 can be used for an enhanced lo-
calisation of structure-affecting bugs. There are two kinds of such bugs: (1) those
which lead to additional structures and (2) those leading to missing structures.
To deal with both of them, we use the support supp of every subgraph sg in
Gcorr and Gfail separately to define two intermediate rankings. The rationale is
that methods in subgraphs having a high support in either correct or failing
executions are more likely to be defective. We again use the maximum:

Pcorr(m) := max
m∈sg∈SG

supp(sg , Gcorr); Pfail(m) := max
m∈sg∈SG

supp(sg , Gfail)

With these two values, we define a structural score as follows:

Pstruct(m) = |Pcorr(m)− Pfail(m)|

To integrate Pstruct into our GainRatio-based method ranking P (m) (in Line 7
in Algorithm 1), we calculate the average:

Pcomb(m) =
P (m) + Pstruct(m)

2

5 Experimental Evaluation

To investigate the defect-localisation capabilities of our approach, we use the
Weka [23] machine-learning suite, manually add a number of defects to it, in-
strument the code and execute it using test-input data. Finally, we compare
the defect ranking returned by our approach with the de-facto defect locations.
Overall, we carry out six experiments1:

(E1) Application of the new approach featuring DEC graphs,
(E2) —— with follow-up-infection detection,
(E3) —— with follow-up-infection detection and structural ranking,
(E4) the same approach with call graphs that are not dataflow enabled,
(E5) —— with follow-up-infection detection, and
(E6) —— with follow-up-infection detection and structural ranking.

Experimental Setting. Weka is a data-intensive open-source application with
a total of 19,938 methods and 301k lines of code (LOC). We introduce five
different kinds of defects. They are of the same types as the defects in related
evaluations, e.g., the Siemens programmes [10], which are often used [3, 5, 18] to
evaluate defect localisation techniques for C programmes. Yet, a single Siemens
programme comprises at most 566 LOC, which makes them unrealistically small
and makes defect localisation less challenging.

The defect types introduced to Weka are typical programming mistakes, are
non-crashing, occasional and dataflow-affecting and/or call-graph-affecting:

– Variable assignment. The assigned value of a variable differs from the correct
value. An example for such a defect is counter = a + b where the correct
code is counter = a.

– Off-by-one. This defect often happens when accessing an array or a collection.
For example, coll.get(i) is accessed instead of coll.get(i + 1).

– Return value. In this case, only the return statement of a method has a
defect. For example, return 0 is used instead of return bestValue.

– Loop iterations. This kind of defect affects the number of executions of a
loop. For example, a for loop uses the wrong counter variable or misses
an iteration: for(int i = 0; i < max; i++) instead of for(int i = 0;

i <= max; i++).
– Branching condition. This kind of defect covers wrong comparisons like

a > b instead of a < b. Furthermore, the Boolean expressions and, or, true
and false can be easily misplaced in branching conditions.

1 (E4–6) essentially are a comparison to [7] (“total reduction”). We use the same
localisation technique as with the DEC graphs for a fair comparison.

In total, we evaluate ten separate defects (Defect 1–10) as well as six com-
binations of two of these defects (Defects 11–16).2 The defects introduced are
4x variable assignment, 3x return value, 1x off-by-one, 1x loop condition and
1x branch condition. Variable-assignment defects include array manipulations,
string operations and inline variable assignments (e.g., doSth(op(a) + b)). Re-
turn values are manipulated by a value offset, returning a constant instead of a
variable and by returning a wrong constant. We introduce some kinds of defects
repeatedly to cover different characteristics of each defect. Defects 11–16 mimic
typical situations where a programme contains more than one defect.

We introduce all defects in weka.classifiers.trees.DecisionStump. This
class is the implementation of a decision-tree algorithm which comprises 18
methods. We emphasise that we instrument all 19,938 methods of Weka, and
all of them are potential subjects to defect locations. A typical execution of
DecisionStump involves a total of 30 methods.

We execute each defective version of Weka with 90 sets of sampled data
from the UCI machine-learning repository [1] and classify correct and failing
executions of the programme. To this end, we first execute a correct reference
version of Weka with all 90 UCI data sets. After that, we execute the defective
versions with the same data. We then interpret any deviation in the output of
the two versions as a failure. The number of correct executions is in the same
range as the number of failing ones. They differ by a factor of 2.7 on average
and by 5.3 in the worst case.

Experimental Results. We present the results – the ranking position which
pinpoints the actual defect – of the six experiments for all sixteen defects in
Table 3. This position quantifies the number of methods a software developer
has to review in order to find the defect (smaller numbers are preferred). We
compare the experimental results pairwise between DEC graphs (E1–3) and non-
DEC graphs (E4–6), as indicated by the arcs. A grey-coloured cell means worse
results, non-coloured cells mean same or improved results. Bold-face rankings
indicate same or improved results compared to the preceding row (separately
for DEC/non-DEC graphs). In programmes with more than one defect (i.e., De-
fects 11–16), we present numbers corresponding to the defect ranked best. This
reflects that a developer would first fix one defect, before applying our technique
again. Sometimes two or more methods have the same defect likelihood. In this
case, we use the worst ranking position for all methods with the same likelihood.
This is in line with the methodology of related studies [11].

The experiments clearly show the improved defect-localisation capabilities
of the new approach based on DEC graphs. Even without extensions (E1), a
top ranking is obtained in 15 out of 16 cases. We consider a method ranked top
when a developer has to investigate only 3 methods out of the 30 ones actually
executed. With non-DEG graphs (E4), only 6 defects are ranked top. In only 5
out of 48 measurement points, compared to 26 out of 48 ones, the DEC-graph-
based approach is worse than the reference. DEC graphs have reached a top

2 We provide the defective programme versions online:
http://www.ipd.kit.edu/~eichi/papers/eichinger10software-defect/

Experiment \ Defect 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∅
(E1) DEC graphs 3 3 1 3 2 2 12 3 1 1 2 2 1 2 1 3 2.3
(E2) DEC graphs 2 2 1 2 2 2 9 2 1 1 2 2 1 2 1 2 1.9
(E3) DEC graphs 1 1 1 2 6 1 1 1 3 5 1 1 1 1 1 1 1.6

(E4) Non-DEC graphs 1 1 11 13 10 3 13 10 9 6 3 8 1 3 8 10 6.1
(E5) Non-DEC graphs 1 1 4 5 4 2 7 3 5 4 2 4 1 2 3 3 2.8
(E6) Non-DEC graphs 1 1 1 2 7 1 2 1 8 6 1 1 1 1 1 1 2.0

Table 3. Defect-localisation results. (E2/3/5/6) incl. follow-up, (E3/6) incl. struct.

ranking in 44 cases, whereas non-DEC graphs had a top ranking in only 28 cases.
When directly comparing DEC graphs (E1) with non-DEC graphs (E4) without
extensions, the defect localisation was better in 13 out of 16 cases. Furthermore,
looking at the average values (‘∅’), the number of methods to be investigated
could be reduced by more than half.

Using the follow-up detection (E2/5), the ranking could be improved in all
cases or has generated results of the same quality compared to the respective ini-
tial approach. This is remarkable, as the follow-up-infection detection is a heuris-
tic approach. The use of both the follow-up and structural extension (E3/6)
results in further improvements. For DEC graphs (E3) in comparison to (E2),
the extension improves the ranking in 9 cases and lowers the ranking in 3 cases,
i.e., better overall results. For non-DEC graphs (E6) in comparison to (E5), the
picture is similar: 10 improved cases and 3 worse ones.

Analysing the localisation capabilities per defect class results in an inhomo-
geneous picture when looking at (E1–3). For the variable-assignment Defects 1,
3, 5, 6, localisation is mostly fine; the off-by-one Defect 2 is well located; return-
value Defects 4, 8, 9 can be located with both approaches. Only for Defect 9
we achieve a further improvement compared to non-DEC graphs. The structural
extension is misleading for the localisation of branch-condition Defect 10, while
it enables the identification of the loop-iteration Defect 7 (a structure-affecting
bug; the changed loop condition hinders the loop from being executed and thus
other methods from being called).

Regarding the Weka versions with two defects (Defects 11–16), defect local-
isation always works better on average than for versions with only one defect
(E1–6). Our explanation is that defect localisation has a higher chance to be
correct when two methods have a defect.

Overall, the experiments show a large improvement of the ranking with the
new approach. In combination with follow-up detections and the structural rank-
ing (E3), results are best. Using the structural ranking leads to a slightly worse
ranking for some defects. The experiments also show that only 1.6 out of the
19,938 methods of Weka (of which 30 methods are actually executed) must be in-
vestigated on average in order to find a defect (E3). The results promise a strong
reduction of time spent on defect localisation in software-engineering projects.

Improved Experimental Results using Static Analysis. Despite the good
results achieved so far, we investigate further improvements. One starting point

is the handling of methods with the same defect likelihood. As in related stud-
ies [11], we currently use the worst ranking position for all methods which have
the same defect likelihood. A second static ranking criterion helps distinguishing
methods with the same defect likelihood: We sort such methods decreasingly by
their size in lines of code (LOC)3. Research has shown that the size in LOC
frequently correlates with the defectiveness likelihood [20]. Applied to our ex-
periments, we can observe an improvement of the average ranking position as
follows: 2.3 to 1.9 (E1), 1.9 to 1.7 (E2), 1.6 to 1.5 (E3), 6.1 to 3.6 (E4), 2.8
to 2.6 (E5) and 2.0 to 1.9 (E6). Although the additional static ranking cri-
terion leads to improvements in all experiments, the non-DEC graphs (E4–6)
benefit from the improved ranking to a larger extent. As feature selection for
non-DEC graphs considers fewer columns, the defect likelihood of methods has
fewer different values than for DEC graphs, and this more frequently leads to
equal rankings. However, even after the combination with static analysis, defect
localisation with DEC graphs is always better on average than with non-DEC
graphs. The same observations as described in the preceding paragraphs hold.

6 Related Work

Defect-localisation techniques are static or dynamic. Dynamic techniques rely
on the analysis of programme runs (like our approach) while static techniques
do not require any execution and investigate the source code only.
Static Analysis. Mining software repositories maps post-release failures from a
bug database to defects in static-source code. For example, [20] derives standard
code metrics and builds regression models which then predict possible post-
release failures. Such approaches require a large collection of defects and exten-
sive version-history data.

FindBugs [2] is an approach complementary to ours. Its static-code analyses
for Java generally cannot localise most dataflow-related defects. Regarding the
defects in our evaluation (Section 5), FindBugs recognises none of them. Instead,
it aims at defects like possible null-pointer accesses due to missing initialisation.
Dynamic Analysis. Approaches in this category are based on instrumentation,
like our approach. Such approaches tend to either have a large memory footprint
or do not capture all defects due to selective logging of executions.

Statistical defect localisation is a family of dynamic techniques which utilise
pattern detection on data values monitored during execution. Liblit et al. [16]
analyse monitored data values using regression techniques to identify defective
code. Compared to our work, Liblit et al. record only three intervals for return
values of methods. We use a variable number of dynamically identified intervals
for data characterisations. The approach reduces its footprint by collecting only
small samples of executed programmes. A similar approach by Liu et al. [17] fo-
cuses on controlflow and instruments variables in condition statements. It then
calculates a ranking which yields high values when the evaluation of these state-

3 Here we use the sum of non-blank and non-comment LOC inside method bodies.

ments differs significantly in correct and failing executions. Opposed to our ap-
proach, none of these approaches takes structural properties of call graphs into
account. Hence, structure-affecting bugs can be detected less easily.

Analysis of execution traces is the basis for call-graph-based methods. Taran-
tula [11, 12] is a technique using tracing and visualisation. To localise defects,
it utilises a ranking of programme components which are executed more of-
ten in failing programme executions. Though this technique is rather simple, it
produces good defect-localisation results. Our technique comprises the method-
invocation structure and dataflow information, which is not covered by [11, 12].

Masri [19] performs a dynamic information-flow analysis to localise defects
in source code. Specifically, sub-paths of information flow of correct and failing
executions are compared, to rank defect positions. Information-flow sub-paths
comprise frequency, source and target types (e.g., branch, statement), and the
length of the information-flow path executed. Opposed to [19], our approach
deals with abstractions of data values in the dataflow analysis and not only
relies on the relation of correct and failing executions for defect localisation.

7 Conclusions and Future Work

Defect localisation is essential in software engineering, but very time-consuming.
(Semi-)Automated localisation therefore is desirable. We have presented an ap-
proach based on newly introduced dataflow-enabled call graphs (DEC graphs).
It outperforms existing techniques. It targets at defects which affect the dataflow
or the controlflow of a programme. Both technical contributions of our approach,
the generation and the analysis of DEC graphs, rely on data-mining techniques.
Our approach generates DEC graphs by means of meaningful discretisation and
derives defect localisations with a weighted graph-mining approach.

Our experiments have shown that the approach may significantly reduce the
time required to localise defects in software. On average, only 1.5 out of the 30
methods executed in the case-study system must be investigated to fix a defect.

Future work will extend the approach: (1) Currently, global variables are not
handled. Static code analysis might help to identify global variables that are
read within a method. They can then be treated like method-call parameters.
(2) We plan to investigate an integration with ideas from Masri’s approach [19].
Furthermore, as mentioned in Section 3, we will investigate non-primitive data
types and ‘real defects’, originating from open-source software projects [4].

References

1. Asuncion, A., Newman, D.J.: UC Irvine Machine-Learning Repository, available
at http://archive.ics.uci.edu/ml/

2. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using Static
Analysis to Find Bugs. IEEE Softw. 25(5), 22–29 (2008)

3. Cheng, H., Lo, D., Zhou, Y., Wang, X., Yan, X.: Identifying Bug Signatures Using
Discriminative Graph Mining. In: Proc. Int. Symposium on Software Testing and
Analysis (ISSTA) (2009)

4. Dallmeier, V., Zimmermann, T.: Extraction of Bug Localization Benchmarks from
History. In: Proc. Int. Conf. on Automated Software Engineering (ASE) (2007)

5. Di Fatta, G., Leue, S., Stegantova, E.: Discriminative Pattern Mining in Software
Fault Detection. In: Proc. Int. Workshop on Software Quality Assurance (2006)

6. Eichinger, F., Böhm, K.: Software-Bug Localization with Graph Mining. In: Ag-
garwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Springer (2010)

7. Eichinger, F., Böhm, K., Huber, M.: Mining Edge-Weighted Call Graphs to Lo-
calise Software Bugs. In: Proc. ECML PKDD (2008)

8. Eichinger, F., Pankratius, V., Große, P.W.L., Böhm, K.: Localizing Defects in Mul-
tithreaded Programs by Mining Dynamic Call Graphs. In: Proc. Testing: Academic
and Industrial Conference – Practice and Research Techniques (2010)

9. Han, J., Gao, J.: Research Challenges for Data Mining in Science and Engineering.
In: Kargupta, H., Han, J., Yu, P.S., Motwani, R., Kumar, V. (eds.) Next Generation
of Data Mining. Chapman & Hall/CRC (2008)

10. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the Effective-
ness of Dataflow- and Controlflow-Based Test Adequacy Criteria. In: Proc. Int.
Conf. on Software Engineering (ICSE) (1994)

11. Jones, J.A., Harrold, M.J.: Empirical Evaluation of the Tarantula Automatic Fault-
Localization Technique. In: Proc. Int. Conf. on Automated Software Engineering
(ASE) (2005)

12. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of Test Information to Assist
Fault Localization. In: Proc. Int. Conf. on Software Engineering (ICSE) (2002)

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Proc. European Conf. on Object-Oriented Programming
(ECOOP) (2001)

14. Krogmann, K., Kuperberg, M., Reussner, R.: Using Genetic Search for Reverse
Engineering of Parametric Behaviour Models for Performance Prediction. IEEE
Trans. Softw. Eng. (2010), accepted for publication, to appear

15. Kurgan, L.A., Cios, K.J.: CAIM Discretization Algorithm. IEEE Trans. Knowl.
Data Eng. 16(2), 145–153 (2004)

16. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug Isolation via Remote Program
Sampling. SIGPLAN Not. 38(5), 141–154 (2003)

17. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: Statistical Model-Based
Bug Localization. SIGSOFT Softw. Eng. Notes 30(5), 286–295 (2005)

18. Liu, C., Yan, X., Yu, H., Han, J., Yu, P.S.: Mining Behavior Graphs for “Backtrace”
of Noncrashing Bugs. In: Proc. SDM (2005)

19. Masri, W.: Fault Localization Based on Information Flow Coverage. Softw. Test.,
Verif. Reliab. 20(2), 121–147 (2009)

20. Nagappan, N., Ball, T., Zeller, A.: Mining Metrics to Predict Component Failures.
In: Proc. Int. Conf. on Software Engineering (ICSE) (2006)

21. Philippsen, M., et al.: ParSeMiS: The Parallel and Sequential Mining Suite, avail-
able at http://www2.informatik.uni-erlangen.de/EN/research/ParSeMiS/

22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
23. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann (2005)
24. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining Significant Graph Patterns by Leap

Search. In: Proc. SIGMOD (2008)
25. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proc.

KDD (2003)
26. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann (2009)

