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Static pressure fluctuations measured in the atmospheric surface layer over a grass covered forest
clearing are studied in the context of Townsend’s 1961 hypothesis regarding the effect of the outer
region on the inner region. It is shown that large-scale pressure features are actively straining the
inertial-scale pressure fluctuations, thus invalidating the direct extension of Kolmogorov’s 1941
hypothesis to the spectral scaling of pressure within the inertial subrange. A parameter describing
the large scale pressure fluctuations is added to the set of variables responsible for inertial-range
pressure differences and dimensional analysis is employed to derive an improved scaling law for
pressure spectra which more closely matches these and previous experimental results. An
examination of the Poisson equation for pressure is conducted and found to support the dimensional
and experimental results. ©1998 American Institute of Physics.@S1070-6631~98!00206-2#
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INTRODUCTION

Turbulently fluctuating static pressure is perhaps
least understood basic flow variable in the atmospheric
face layer~ASL!. This is due to the difficulty inherent in
measuring this term and, consequently, the lack of publis
experimental results. The static pressure term is intima
linked with the momentum equation. To improve our und
standing of momentum dependent processes, such as t
lent transfer between the land and the atmosphere, we req
an improved understanding of the pressure behavior.1–3 New
pressure-sensing instruments have been developed in the
two decades4–6 and have been applied in field experiments
yield useful results. However, the spectral properties of
fluctuating static pressure remain largely uncertain.

Following Kolmogorov’s7 arguments for the inertial sub
range, in the case of local isotropy, thenth moment of ve-
locity differences (Dn,u) taken over a separationr in the
direction of the mean flow is

Dn,u5^~u~x1r !2u~x!!n&5Cn,u^e&n/3r n/3, ~1!

whereu is a velocity component,e is the dissipation rate o
turbulent kinetic energy per unit mass, and^¯& is the aver-
aging operator. The Fourier counterpart of~1! with n52 is
the celebratedk25/3 scaling law for velocity spectra. It ha
been suggested that Kolmogorov’s similarity arguments
the inertial subrange can be applied to pressure fluctuat
as well.8 This approach, based predominately on dimensio
arguments and the idea that static pressure differences a
spatial lagr are described completely bye and r , yields
1721070-6631/98/10(7)/1725/8/$15.00
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D2,p5^~p~x1r !2p~x!!2&5C2,p^e&4/3r 4/3, ~2!

where p is the static pressure fluctuation in m2/s2 ~i.e., the
pressure is normalized by the density! andC2,p is a constant.
We note that~2! can also be derived from theoretical consi
eration of higher order local velocity moments,9 as outlined
later in the Discussion. The Fourier counterpart of~2! is the
predictedk27/3 scaling law for pressure spectra. However,
is not clear whether the Kolmogorov similarity argumen
apply to pressure in a wall bounded shear flow. To direc
extend Kolmogorov’s inertial range assumptions to press
@as in~2!# is to assume an analogy between the mechani
that cause pressure differences across spatial separationr )
in the inertial subrange and those mechanisms that ca
velocity differences. Such an analogy is useful to expl
some of the pressure difference—that part owing to lo
effects—but it fails to capture the nonlocal contributions
the local pressure field. In fact, Monin and Yaglom8 ~p. 343!
offer these words of caution when describing the usefuln
of the local isotropy tools:

‘‘...the application of the theory of locally isotropic
turbulence to the study of pressure fluctuations is
slightly more questionable than other applications of
the theory; it is possible that comparatively far re-
gions of the flow make non-negligible contributions
to the pressure fluctuations at a point.’’

It is helpful to consider this issue in the context
Townsend’s10 hypothesis, which describes the turbulent fie
in the inner region of the atmospheric boundary layer~ABL !
5 © 1998 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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as the superposition of two fields: one of ‘‘active motion
due to the vorticity of the inner region of the boundary lay
and the other of ‘‘inactive motion’’ imposed on the inn
region by pressure fluctuations created in the outer reg
The active motion is directly due to the local momentu
transfer to the surface and is, therefore, governed by
shear stresst and the height above the groundz. The inac-
tive motion is irrotational and not related tot. Bradshaw’s11

data analysis supports Townsend’s theory, showing
large scale pressure fluctuations in the outer region affec
dynamics in the inner region. What remains to be inve
gated is whether these large scale fluctuations are affec
the inertial scale pressure fluctuations. If, in fact, signific
interactions exist, then~2! will not accurately describe the
local structure of the pressure field. This may explain w
~2! has failed to successfully match experimental meas
ments in the ABL.4,12,13

Although several studies of surface static pressure fl
tuations have been performed in the laboratory,11,14–18 the
results are typically scaled by properties not relevant to A
studies. Consequently, the present discussion is restricte
relevant field studies and some important, yet general, res
of the laboratory studies. For a review of the early laborat
studies see Willmarth.19

Georgeet al.20 derived from a spectral model of the ve
locity field an expression for the inertial range pressure sp
tra for free shear flows. As their work was constrained to f
shear flows the surface integral, which accounts for bound
effects, vanished in their integration of the Poisson equa
for pressure. The resulting pressure field is shown to be
to two mechanisms: the interaction of turbulence with its
and the interaction of turbulence with the mean shear. T
work clarified the scaling of pressure spectra in the iner
subrange for locally isotropic free shear flows, with a findi
that it scales ask27/3. The focus of the present study is o
wall bounded shear flows, where the surface integral can
be ignored in the Poisson solution. Hence, we can accep
result of Georgeet al.20 as an excellent point of departur
from which we can study the added complication of the pr
ence of a wall. An important effect of the wall may well b
the imposition of large scale pressure features on the lo
region of the boundary layer from perturbations occurring
the outer region. We consider the potential effects of th
vertically communicated large scale pressure perturbat
on the structure of the inertial scale pressure field in the in
region of the ASL.

Elliott’s12 work represents the first detailed study
static pressure fluctuations in the free stream flow of
ASL. He measured static pressure spectra in the ASL up
m above the surface and found no strong dependence
heightz, unlike inertial range velocity spectra which depe
strongly onz, and found the spectra to collapse when n
malized by the squared shear stress. In both papers Ellio4,12

presents pressure spectra that scale withk raised to a power
between21.5 and21.7, in stark contrast to the theoretic
scaling ofk27/3 ~i.e., slope of22.333!. From measurement
below and above a mature forest canopy, Sigmonet al.13

found the pressure spectra to be somewhat flatter thank22,
with the flattest spectra found above the canopy. They
Downloaded 25 Jan 2001  to 128.220.27.142.  Redistribution subject 
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tribute the steeper slope in the canopy to the preferen
filtering of high frequency fluctuations by the trees. The p
dominance of low wave number pressure fluctuations ins
the canopy is explained well by the analysis of Shaw a
Zhang,21 which describes how flow inside the canopy
largely driven by large scale pressure perturbations
pressed on the lower regions by the flow above the cano
Analyses of wind tunnel data have shown similar respon
bility of the outer region flow in controlling the inner regio
flow through pressure fluctuations.16,22 Interestingly, they
found an interdependence between the low- and high-wa
number pressure fluctuations. This point raises seri
doubts about the applicability of local isotropy assumptio
in describing the pressure spectrum.

Praskovskyet al.23 have shown that when the large-sca
components of a variable are interacting with the ‘‘inert
scales’’ an additional large-scale governing parameter, s
as the rms value of the variable, must be added to
inertial-range scaling.22 Therefore, assuming that interactio
between the large- and small-scales is significant, a mea
of the energy content of the large scale static pressure m
be considered in the list of dimensional variables influenc
the statistical structure of the local pressure.

We seek a scaling form that describes the squared p
sure fluctuations across lagr in terms ofe, r , andsp . In this
case there are three important variables and two basic dim
sions, length and time. Note that this system is underde
mined in a manner similar to the expression of mean vert
gradients in a boundary layer subject to density stratificati
We implement this additional large scale variable by mo
fying ~2! with a new dimensionless group

D2,p

^e&4/3r 4/35FS r

L D ,

whereL(5sp
3/2/^e&), andF is a general similarity function.

Although F may, in a general sense, take any form, it mu
be constrained to a power-law if the resulting expression
to be scale-invariant. This is in keeping with the gene
concept of an inertial subrange. WithF(r /L) taken as
C2,p8 (sp /^e&2/3r 2/3)a, this new scaling law becomes

D2,p5C2,p8 ^e&4/3r 4/3S sp

^e&2/3r 2/3D a

, ~3!

whereC2,p8 and the exponenta are new constants to be de
termined by experiment. Note that~3! converges to~2! when
a→0. This new form provides a scale-invariant descripti
of the local pressure field in terms of the dissipation rate,
separation distance, and a measure of the influence of
large scale pressure field.

The objectives of the present paper are to~i! evaluate
whether significant interaction exists between large- a
small-scales over a wide range of conditions in the atm
spheric surface layer;~ii ! determine if this interaction can
explain the consistently flatter-than-predicted spectral sca
slopes observed for the local pressure field in previo
boundary layer experiments; and~iii ! define for the local
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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Downloaded 25
TABLE I. Summary of selected mean meteorological and turbulence conditions. Runs 1–4 are DOY5253 and
runs 5–14 are DOY5254.

Run
#

u*
(ms21)

H
(wm22)

LE
(wm22) 2z/L

sp

(m2 s22)
Lp

~m!
Lu

~m!
^e&3103

(m2 s23)

1 0.20 97.0 226.0 0.25 0.07 17.2 24.5 5.90
2 0.21 87.0 211.0 0.22 0.05 14.6 23.5 7.34
3 0.23 61.0 171.0 0.11 0.08 5.8 18.5 9.73
4 0.20 24.0 140.0 0.08 0.06 9.6 5.5 8.25
5 0.32 99.0 134.0 0.06 0.19 53.4 72.1 24.6
6 0.31 119.0 174.0 0.08 0.18 40.7 12.0 28.4
7 0.29 118.0 166.0 0.10 0.14 14.0 35.2 21.9
8 0.28 134.0 208.0 0.13 0.20 22.4 39.4 27.8
9 0.32 143.0 228.0 0.09 0.22 32.2 35.0 46.8

10 0.23 154.0 210.0 0.27 0.14 18.0 17.1 18.6
11 0.24 112.0 208.0 0.17 0.12 58.4 35.4 19.7
12 0.29 157.0 264.0 0.13 0.16 28.7 80.7 16.7
13 0.16 37.0 101.0 0.21 0.06 8.5 8.5 7.41
14 0.16 47.0 113.0 0.23 0.07 17.0 16.1 5.60
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pressure statistical structure in the ASL a general simila
formulation that is consistent with the equations of moti
and the results of the previous experiments.

EXPERIMENT

Near surface atmospheric turbulence was measured
September 10 and 11, 1994 in a grass covered clearing a
Duke University Forest. The clearing is approximately 4
m by 450 m, within a 13 m tall stand of pine tress. A thre
dimensional sonic anemometer~Gill Instruments Ltd.,
Hampshire, England! was used to measure the three comp
nents (U,V,W) of the air velocity and the air temperatu
(Ta) at 10 Hz. A static pressure probe~described below! was
located 0.3 m to one side of the 3D sonic anemometer
was operated at 10 Hz. A Krypton hygrometer~Campbell
Scientific, Logan, UT! was located 0.3 m to the other side
the 3D sonic anemometer and used to measure turbu
fluctuations in the water vapor concentration (q) in the air at
10 Hz. All three instruments were located at a height of 1
m above the ground, which is covered with grass extend
to a height of 0.3 m~i.e., the instruments were about 1.25
above the top of the grass canopy!. The data have been d
vided into 27 files~9 from the first day, 18 from the second!,
each containing 16 384 records and covering a period of 2
min ~i.e., 16 384 records at 10 Hz!. Of these 27 files col-
lected over the 2 days, eight were disqualified on the bas
excessive nonstationarity due to being collected during e
morning or late afternoon hours when the flow was clea
passing from one stability regime to another~e.g., stable to
unstable!, and five were disqualified for lacking an inerti
subrange in the velocity statistics. The presence of an ine
subrange was deduced from examination of the slope of
third order velocity structure function. The remaining 14 fil
are marked by well defined mean values for each flow v
able such that they were readily decomposed into mean
fluctuating components. The instantaneous velocities are
resented byU, V, andW, for the streamwise, spanwise, an
vertical directions. Upper case letters are used for the ins
taneous values, lower case letters represent fluctuations a
 Jan 2001  to 128.220.27.142.  Redistribution subject 
y

on
the

-

-

d

nt

5
g

.3

of
ly
y

ial
e

i-
nd
p-

n-
out

the mean, ands is used to represent the standard deviati
The mean micrometeorological and turbulent statistics
the 14 acceptable runs are presented in Table I, wh
u* (5@t/r#1/25@2^uw&#1/2) is the friction velocity,t is the
surface shear stress,r is the air density,H is the vertical
sensible heat flux,LE is the latent heat flux,2z/L is the
stability parameter,L is the Obukhov length,Lu is the inte-
gral length of the longitudinal velocity signal, andLp is the
integral length of the pressure signal. The integral len
scales were computed from the autocorrelation functions25

Lu5^U&E
0

` ^u~ t !u~ t1u!&
su

2 du, ~4!

Lp5^U&E
0

` ^p~ t !p~ t1u!&
sp

2 du, ~5!

where, in practice, the integration is carried out numerica
and stopped at the first zero crossing in the autocorrela
function. The boundary layer stratification for these runs v
ied from near-neutral to moderately unstable, but sho
have little effect for inertial range purposes. Note th
Taylor’s26 hypothesis of frozen turbulence is used to conv
from time to space. The pressure probe was constructe
Conklin6 after the design of Robertson,27 tested in a series o
wind tunnel experiments,6 and found to perform as well as
probe13 constructed with the standard design of Elliott.4 Con-
klin’s probe samples the pressure through 2 mm holes on
inside of each of two parallel 15 cm diam disks, separated
10 cm. The pressure is measured by a Barocell pres
transducer~Datametrics model 570D-10B-2A1-V1X! with
an electronic manometer. An effective low-pass filter w
implemented by venting to the atmosphere through a lo
capillary tube. Wind tunnel tests6 show this design to suffe
only minor effects for angles of attack of up to 20 deg. F
additional details on the experiment and the probe see K
et al.24,28
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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RESULTS

Before accepting~3! as a suitable replacement for~2! we
must first establish that~i! an inertial subrange is present fo
the velocity measurements~and, therefore, should be ex
pected for the pressure!, ~ii ! the local velocity differences ar
not interacting with local pressure differences,8,29 and ~iii !
there exists significant interaction between the large-
small-scale components of the pressure signal. See K
et al.29 for a discussion of isotropy, anisotropy, compone
interaction, and the inertial subrange.

In the present analysis we will focus on the structu
function form of the spectral scaling, rather than the Fou
power spectra form. The structure function is attractive
that it is more closely tied to Kolmogorov’s7 original argu-
ments regarding local differences, is not sensitive to the d
nition of a global mean, does not require modification of t
measured data through windowing and tapering, and p
vides a smoother scaling such that power laws are more
ible. Furthermore, the structure function is advantageou
the present effort for it has clear and direct ties to the m
sures of interaction between large and small scales, as d
oped by Praskovskyet al.23 and introduced below. For a sta
tionary process the structure function is directly related to
power spectrum by the Fourier transform.

We will use the third order structure function for velo
ity @i.e., ~1! with n53# as it is considered a more reliable te
of inertial subrange scaling than the second order form.30,31

Furthermore, forn53 the constant is known exactly,C3,u

524/5, from the work of von Karman and Howarth.32 Be-
fore presenting ensemble plots of all 14 runs with the va
ables nondimensionalized, we examine in detail two sam
runs ~5 and 11! selected arbitrarily from the group of 14. I
Fig. 1~a! the velocity power spectra are presented and
seen to match well the Kolmogorov7 25/3 scaling law. The
corresponding third order structure functions are shown
Fig. 1~b! alongside the predictedr 1 scaling from~1!. Note
that only a narrow window around the inertial subrange
presented in Fig. 1~b! as the third order structure functio
becomes highly erratic for lags longer than inertial sepa
tion as anisotropic effects become significant. The sec
order structure function is much smoother, asymptotes
dictably asr→`, and is, therefore, not as sensitive an in
cator of local isotropy in the velocity signal. The third ord
structure functions were regressed~from 0.15 m,r
,0.75 m! to obtain estimates of̂e& for each of the 14 files
~see Table I!, then normalized bŷe&r , and plotted agains
r /Lu in Fig. 2. The range regressed is expected to beh
inertially as it represents scales between a lower limit se
the instrument’s maximum resolution and an upper lim
equal to one-half the height above the wall. Note from~1!
thatD3,u /(^e&r ) should have nor dependence in the inertia
subrange. It appears from Fig. 2 that the velocity sign
scale in accordance with Kolmogorov’s7 theory, thus meet-
ing an important, necessary, but not sufficient condition
the presence of an inertial subrange.

The interaction of streamwise velocity differenc
Du(r )(5u(x1r )2u(x)) and pressure difference
Dp(r )(5p(x1r )2p(x)) across lagr in the inertial sub-
Downloaded 25 Jan 2001  to 128.220.27.142.  Redistribution subject 
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range was investigated by studying the correlation coeffic
betweenDu(r ) and Dp(r ) as a function ofr . The correla-
tion coefficient betweenDu(r ) andDp(r ) is shown in Fig. 3
for a wider range ofr than in Fig. 2 in order to depict the
contamination ofDp(r ) by Du(r ) as r becomes larger than

FIG. 1. ~a! Longitudinal velocity power spectra for two sample files. Th
Kolmogorov25/3 spectrum is shown for comparison. The wave numbek
has units of~rad/m!. ~b! Third order structure function of the longitudina
velocity for the same two files shown in~a!. The predicted inertial range
scaling ofr 1 is shown. The lagr is in units of ~m!.

FIG. 2. Ensemble average~14 files! of the normalized third order structure
function of the longitudinal velocity~solid circles!, plotted with6 one stan-
dard deviation about the ensemble average~dashed lines!. The normalized
abscissa,Duuu8 (r )5D3,u(r )^e&21r 21, should be constant (24/5) for lagsr
in the inertial subrange. The ordinate has been normalized by the inte
length scale of the longitudinal velocity.
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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the measurement height. From Fig. 3 it is evident that for
assumed inertial scales there is a near absence of intera
of Dp(r ) and Du(r ), consistent with local isotropy condi
tions as described by Monin and Yaglom8 ~pp. 401–402!.

To examine the interaction of large- and small-sc
pressure we employed a correlation coefficient between la
scale pressure fluctuationsp and squared local pressure d
ferences D2p(r )@5(p(x1r )2p(x))2# as introduced by
Praskovskyet al.,23

rpDp25
^p~x!•~D2p~r !2^D2p~r !&!&

spsD
p
2

~6!

and found the correlation to be consistently of the or
20%–30% throughout the inertial subrange. This is an ex
sion of the arguments~about velocity! made by Praskovsky
et al. ~1993!, resulting in the selection ofp and Dp(r ) to
represent ‘‘global’’ and ‘‘local’’ pressure scales. The pre
ence of finite correlation between these flow variables
plies dynamical interaction between them.

From the above analysis we have reason to expect
the flow possesses an inertial subrange, that local velo
differences are not interacting with local pressure diff
ences, and that the large scale pressure is actively stra
the local pressure differences. To account for the effec
the large scale pressure, we addsp to the list of important
dimensional variables that describe the scaling of the lo
pressure field. Heresp is used as a proxy for the energ
content of the large scale pressure fluctuations.

We now explore the values ofC2,p8 anda in ~3!. As with
the velocity, we first show the power spectra and struct
functions for runs 5 and 11. Figure 4~a! depicts the power
spectra of the pressure fluctuations. Note that rather t
scaling ask27/3 they seem to be scaling ask23/2, as seen in
previous field experiments.4,12,13 The second order pressu
structure function is shown in Fig. 4~b!, where we note the
inertial scales followingr 1/2 rather thanr 4/3. Note r 1/2 and
r 4/3 correspond directly tok23/2 andk27/3, respectively, and
that in Fig. 4~b! we are able to present a wider range ofr
than in Fig. 1~b! because the second order statistics are
prone to erratic behavior from sign changes asr gets larger
than the inertial scales. Witĥe& known from the regression

FIG. 3. The correlation coefficient betweenDp(r ) and Du(r ) plotted
against lag normalized by the integral length scale of pressure.
Downloaded 25 Jan 2001  to 128.220.27.142.  Redistribution subject 
e
ion

e
ge

r
n-

-
-

at
ity
-
ing
f

al

e

an

ss

of D3,u , ~3! was log transformed and subject to regression
obtain estimates ofC2,p8 and a for each data file~Table II!.
From an inspection of Table II, it seems reasonable to as
a value of unity toC2,p8 , which for the 14 files has a mea
value of 0.97 and a standard deviation of 0.17, and a valu
5/4 for a, which for the 14 values has a mean of 1.27 an
standard deviation of 0.06. Therefore~3! becomes

FIG. 4. ~a! Power spectra of pressure for the two sample files. The27/3 and
23/2 scaling forms are shown for comparison. The wave numberk has
units of ~rad/m!. ~b! Second order structure function of pressure for the t
sample files. The two predicted inertial range scaling forms ofr 4/3 and r 1/2

are shown. The lagr has units of~m!.

TABLE II. Regressed constants for Eq.~3!. Note that the net ‘‘power’’ on
r 54/322a/3.

File C2,p8 a Power

1 1.08 1.22 0.52
2 0.76 1.25 0.50
3 0.98 1.28 0.48
4 0.68 1.13 0.58
5 1.18 1.34 0.44
6 0.95 1.27 0.49
7 1.31 1.27 0.49
8 0.85 1.28 0.48
9 0.94 1.34 0.44

10 1.12 1.36 0.43
11 0.80 1.25 0.50
12 1.00 1.28 0.48
13 0.83 1.21 0.53
14 0.83 1.21 0.53
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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D2,p5^~p~x1r !2p~x!!2&5C2,p8 sp
5/4^e&1/2r 1/2, ~7!

where we takeC2,p8 51 from the present experiment. Th
second order pressure structure functions for the 14
(0.15 m,r ,0.75 m) normalized bysp

5/4^e&1/2r 1/2 are plot-
ted against r /Lp in Fig. 5. Note from ~7! that
D2,p /(sp

5/4^e&1/2r 1/2) should have nor dependence in the in
ertial subrange, as is confirmed by Fig. 5.

DISCUSSION

The addition ofsp to the list of parameters governin
pressure differences over inertial separations was justifie
the finite and significant correlation betweenp andD2p(r ).
By adding an additional parameter the dimensional anal
yields a scaling form that is variable in the power ofr , viz.,
~3!. It was necessary to introduce experimental evidenc
order to select a specific form of the scaling~7!. However,
the significance of this result may be clarified by consider
the resulting scaling form ofD2,p in the context of the equa
tions of motion.

For an incompressible constant density fluid, the m
mentum and continuity equations are

]0Ua1Ub]bUa52]aP1n]b]bUa2da3g, ~8!

]aUa50, ~9!

whereg is the gravitational acceleration,n is the kinematic
viscosity,dab is Kronecker’s delta, and for compactness w
write ]0 for the local time derivative,]g for the partial de-
rivative with respect to thexg direction, and use Einstein’
summation notation for terms with repeated subscripts.
equation for the pressure field is obtained by taking the
vergence of~8! and enforcing continuity

]a]aP52]a]b~UaUb!. ~10!

It is clear from~10! that the pressure field at a point depen
on an integration over the full velocity field, including ap
propriate boundary conditions. An expression for the pr
sure structure function can be obtained from~10! by writing
a similar equation for an adjacent point~separated by dis

FIG. 5. Normalized second order structure function of pressure for all fi
Each file has a unique symbol type. The normalized abscissa,Dpp8 (r )
5D2,p(r )@sp

5/4^e&1/2r 1/2#21, should be constant for lagsr in the inertial
subrange. The ordinate has been normalized by the integral length sca
pressure.
Downloaded 25 Jan 2001  to 128.220.27.142.  Redistribution subject 
s

by

is

in

g

-

n
i-

s

-

tancer !, subtracting~10! from the new equation, taking th
expectation of the squared difference, invoking an assu
tion of local isotropy, and applying Millionschikov’s zero
fourth cumulant hypothesis8 ~p. 407! to obtain

¹2D2,p5dr
4D2,p~r !1

4

r
dr

3D2,p~r !5 f ~r !, ~11!

where f (r ), for locally isotropic turbulence, is a function o
D2,u , drD2,u , dr

2D2,u , anddr
3D2,u . Such an analysis result

in

f ~r !52C^e&4/3r 28/3, ~12!

where C is a constant related toC2,u . We wish to depart
from the typical solution, which uses~12! in the solution of
~11!, and investigate a more general region of solution sp
to learn about the compatibility of~3! with the equations of
motion.

If the statistical structure of the local pressure field
solely a function of r , then the LaplacianD2(5dr

4

1(4/r )dr
3) will not be altered from the original derivation

and the solution to the homogeneous ordinary differen
equation (¹2D2,p50) must remain the same. Furthermor
the homogeneous solution, subject to the conditions thatD2,p

remain finite asr→` and thatD2,p→0 asr→0, results in a
trivial solution D2,p50. This dictates that the interaction be
tween the pressure scales must arise in the nonhomogen
term f (r ). Since the earlier experiments suggest a cons
slope for the pressure spectrum in a log–log framework,
the homogeneous solution does not yield a power law,
deduce thatf (r ) is a general function ofr with a power law
form. Such an assumption requires that the cross-scale in
action not result in strong departures from the locally isot
pic state. This approach is analogous to Kolmogorov’33

1962 hypothesis, which introduced a large-scale length
rameter in the description ofDu, and is in keeping with the
random sweeping decorrelation hypothesis. Conseque
we study the linear fourth order ordinary differential equ
tion

dr
4D2,p~r !1

4

r
dr

3D2,p~r !5ArB, ~13!

whereA contains whatever dimensional parameters are n
essary~in addition to r B! to describeD2,p . By change of
variable,~13! is reduced to a first order linear ODE that
solved with an integrating factor. Then through success
integration back to the original variable we find the soluti

D2,p~r !5
Ar41B

~51B!~41B!~31B!~21B!
1

A1

6r
1

A2r 2

2

1A3r 1A4 . ~14!

Upon applying the boundary conditions8 ~p. 408!,

D2,p~0!50; drD2,p~0!50;
D2,p~r !

r 2 →0, for r→`,

~15!

the solution~14! becomes

s.

of
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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D2,p~r !5
Ar41B

~51B!~41B!~31B!~21B!
,

where B<22. ~16!

Note that this solution is singular for integer values ofB
between22 and 25. It is interesting that the constant i
front of this scaling form forD2,p is a function ofB. We
expect thatB should assume a value about which slig
variations in the slope produce at most small variations in
constant. Furthermore, we expect the value ofB to be be-
tween two limits; the Kolmogorov inertial range limit of
(28/3), and the production range~low wave number! limit 26

of 24. In keeping with the general concept of an inert
subrange, the quantity ((51B)(41B)(31B)(21B))21

should be a constant. To ensure the maximum poss
universality, we propose to defineB such that the quantity
((51B)(41B)(31B)(21B))21, in the range (28/3)
,B,24, is least sensitive to slight changes in the slo
We study this quantity as a function of slope (41B) in Fig.
6. The derivative of this quantity with respect toB possesses
one root atB523.5. This value ofB suggests a scaling fo
D2,p(r ) of the form

D2,p~r !5A5Ar1/2, ~17!

whereA5 is a constant to be determined from experime
andA is a dimensional group that contains important para
eters to describeD2,p(r ) and to achieve dimensional homo
geneity. As our objective is to account for nonlocal effects
addition to the local effects described by the Kolmogor
similarity analogy, we admitsp to account for the nonloca
effects and retain^e&. Therefore, we replaceA with
(^e&a1sp

a2) and force dimensional homogeneity on~17! to
obtain the scaling form

D2,p~r !5A5sp
5/4^e&1/2r 1/2. ~18!

While it is not a rigorous proof, it remains encouraging th
this exploration of the Poisson equation results in a sca
form that is consistent with our dimensional analysis. W
conclude that~7! is more representative of surface layer pre
sure fluctuations than the scaling obtained by direct ex

FIG. 6. Relationship between inertial range scaling slope for second o
structure function of pressure and value of the constant derived from an
sis of the Poisson equation for pressure. Note that the ‘‘constant’’ rem
constant for only select, narrow ranges of the slope.
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sion of Kolmogorov’s7 arguments to pressure@as in~2!#. The
derivation from~11! to ~17! suggests that local isotropy i
necessary for~7! to be universal.

In summary, from a review of the salient literature w
have noted that~i! pressure spectra in the ASL have, as
rule, not matched the scaling suggested by a straight ex
sion of Kolmogorov’s7 arguments to static pressure;~ii ! in-
ner region flow is affected by low frequency pressure flu
tuations in the outer region; and~iii ! an interdependence o
low- and high-frequency pressure fluctuations has b
documented in laboratory experiments. These points m
vated an experimental investigation of ASL pressure fluct
tions. The resulting data were studied and found to poss
an inertial subrange for the velocity components, sugges
that the eddy motion is locally isotropic. No significant in
teraction was found between velocity differences and pr
sure differences for spatial separations in the inertial s
range. However, following the approach of Praskovs
et al.,23 significant interaction was found between large-a
small-scale components of the pressure signal. This inte
tion requires the inclusion of a large-scale pressure param
(sp) to the inertial-range scaling of pressure, which resul
in a general spectral scaling form for pressure fluctuati
that more accurately accounts for actual boundary layer
namics. The experimental data are in agreement with
new scaling form and supported the determination of
empirical constants. An examination of the equations of m
tion also supports the empirical results, leading us to c
clude that the second order pressure structure function sc
with r 1/2 and the Fourier pressure spectrum scales withk23/2

for flows in the surface layer of the atmospheric bound
layer.
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