492 research outputs found

    Efficiency of the Wang-Landau algorithm: a simple test case

    Full text link
    We analyze the efficiency of the Wang-Landau algorithm to sample a multimodal distribution on a prototypical simple test case. We show that the exit time from a metastable state is much smaller for the Wang Landau dynamics than for the original standard Metropolis-Hastings algorithm, in some asymptotic regime. Our results are confirmed by numerical experiments on a more realistic test case

    A reduced model for shock and detonation waves. II. The reactive case

    Full text link
    We present a mesoscopic model for reactive shock waves, which extends a previous model proposed in [G. Stoltz, Europhys. Lett. 76 (2006), 849]. A complex molecule (or a group of molecules) is replaced by a single mesoparticle, evolving according to some Dissipative Particle Dynamics. Chemical reactions can be handled in a mean way by considering an additional variable per particle describing a rate of reaction. The evolution of this rate is governed by the kinetics of a reversible exothermic reaction. Numerical results give profiles in qualitative agreement with all-atom studies

    High resolution coherent population trapping on a single hole spin in a semiconductor

    Get PDF
    We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physics-like dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing. We identify this process as charge noise by, first, demonstrating that the hole spin g-factor in this configuration (in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by characterizing the charge noise through its effects on the optical transition frequency. An important conclusion is that charge noise is an important hole spin dephasing process

    Protean and Boundaryless Career Attitudes: Do Teacher Candidates Have These?

    Get PDF
    Since the late 20th century, the Protean (Hall, 1996) and Boundaryless (Arthur, 1994) career concepts have been posited as explanations for employment transformations in corporate structures. While previous research (Briscoe, Hall, & Fratschy DeMuth, 2006) provides evidence of these constucts with business students, research has lacked in evaluating the Protean and Boundaryless Career Attitudes Scale (PBCAS) with other professions. The purpose of this study was to investigate the factor structure of the PBCAS with 350 undergraduate teacher candidates and to test the new model with a second sample (n = 194). The results showed moderate support for the validity of the PBCAS with teacher candidates. The data produced a five-factor model similar to the factor structure reported by de Bruin and Buchner (2010). These results support previous findings and indicate the need for further research with the instrument

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths

    Competitive portfolio selection using stochastic predictions

    Get PDF
    We study a portfolio selection problem where a player attempts to maximise a utility function that represents the growth rate of wealth. We show that, given some stochastic predictions of the asset prices in the next time step, a sublinear expected regret is attainable against an optimal greedy algorithm, subject to tradeoff against the \accuracy" of such predictions that learn (or improve) over time. We also study the effects of introducing transaction costs into the model

    High nuclear polarization of helium-3 at low and high pressure by metastability exchange optical pumping at 1.5 Tesla

    Full text link
    We perform metastability exchange optical pumping of helium-3 in a strong magnetic field of 1.5 T. The achieved nuclear polarization, from 80% at 1.33 mbar to 25% at 67 mbar, shows a substantial improvement at high pressures with respect to standard low-field optical pumping. The specific mechanisms of metastability exchange optical pumping at high field are investigated, advantages and intrinsic limitations are discussed. From a practical point of view, our results open the way to alternative technological solutions for polarized helium-3 applications and in particular for magnetic resonance imaging of human lungs.Comment: accepted for publication in Europhysics Letter

    Anomalous diffusion for a class of systems with two conserved quantities

    Get PDF
    We introduce a class of one dimensional deterministic models of energy-volume conserving interfaces. Numerical simulations show that these dynamics are genuinely super-diffusive. We then modify the dynamics by adding a conservative stochastic noise so that it becomes ergodic. System of conservation laws are derived as hydrodynamic limits of the modified dynamics. Numerical evidence shows these models are still super-diffusive. This is proven rigorously for harmonic potentials

    Polarized interacting exciton gas in quantum wells and bulk semiconductors

    Get PDF
    We develop a theory to calculate exciton binding energies of both two- and three-dimensional spin polarized exciton gases within a mean field approach. Our method allows the analysis of recent experiments showing the importance of the polarization and intensity of the excitation light on the exciton luminescence of GaAs quantum wells. We study the breaking of the spin degeneracy observed at high exciton density (5  1010cm2)(5 \ \ 10^{10} cm ^2). Energy level splitting betwen spin +1 and spin -1 is shown to be due to many-body inter-excitonic exchange while the spin relaxation time is controlled by intra-exciton exchange.Comment: Revtex, 4 figures sent by fax upon request by e-mai

    Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example

    Get PDF
    We study a simple system described by a 2x2 Hamiltonian and the evolution of the quantum states under the influence of a perturbation. More precisely, when the initial Hamiltonian is not degenerate,we check analytically the validity of the adiabatic approximation and verify that, even if the evolution operator has no limit for adiabatic switchings, the Gell-Mann and Low formula allows to follow the evolution of eigenstates. In the degenerate case, for generic initial eigenstates, the adiabatic approximation (obtained by two different limiting procedures) is either useless or wrong, and the Gell-Mann and Low formula does not hold. We show how to select initial states in order to avoid such failures.Comment: 6 pages, 2 figure
    corecore