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Competitive Portfolio Selection Using
Stochastic Predictions

Tuğkan Batu1 and Pongphat Taptagaporn1

Department of Mathematics, London School of Economics, London, U.K.
{t.batu,p.taptagaporn}@lse.ac.uk

Abstract. We study a portfolio selection problem where a player at-
tempts to maximise a utility function that represents the growth rate
of wealth. We show that, given some stochastic predictions of the asset
prices in the next time step, a sublinear expected regret is attainable
against an optimal greedy algorithm, subject to tradeoff against the “ac-
curacy” of such predictions that learn (or improve) over time. We also
study the effects of introducing transaction costs into the model.

1 Introduction

In the field of portfolio management, the problem of how to distribute wealth
among a number of assets to maximise wealth gain (or some notion of utility,
e.g., mean-variance tradeoff) has been the focus of much academic and industrial
research. Most of the studies in this field were previously from the perspective
of financial mathematics and economics, and would usually assume some under-
lying distribution for the price process, e.g., Brownian Motion.

In the 1990’s, a new field emerged that uses online learning to design growth-
optimal portfolio selection models, following Cover’s original work [8]. This
model was shown to be competitive to the best CRP: an investment strategy
that maintains a fixed proportion of wealth in each of the m assets for each
time step, performing any required rebalancing as to maintain these proportions
as the asset prices change. In particular, Cover showed sublinear regret on all
possible outcomes of price sequence

max
xT

(
logS∗T − log ŜT

)
= O(log T ),

where S∗T and ŜT are the wealth obtained by the best CRP and Cover’s universal
portfolio over T time steps (for some price sequence xT ), respectively. Most
interestingly, the sublinear regret implies that the (per time step) log-wealth
growth achieved by Cover’s model converges to that of the best CRP as T →∞,
without making any assumption on the price process (that is, in a model-free
sense).



1.1 Our Contributions

Our result goes beyond the restriction imposed by the CRP, and instead, we
devise a model that is competitive with the best greedy portfolio in a stochastic
setting: one that makes the optimal decision as if it knows the next time step’s
price. To do this, we suppose that our model has access to a price prediction x̃t (of
the next time step, t+1) that follows some probability distribution x̃t ∼ Dt(xt),
where xt is the later observed price change. In this model, we quantify the precise
relationship between the expected regret and the accuracy of such predictions.
Note that we allow the prediction accuracy to vary over time, as reflected by the
dependence of Dt on the current time step t. We demonstrate that for certain
probability distributions Dt,

Ex̃t∼Dt(xt)

[
max
xT

(
logS∗T − log ŜT

) ]
= o(T )

is attainable, subject to some restrictions on the accuracy of x̃t’s: namely, that
the integral of the tail probabilities (of misestimation) must converge to zero
as t grows. Intuitively, this is equivalent to improving our predictions through
learning from past outcomes, and the requirement is that the model must be
learning at a rate fast enough as to satisfy a certain sufficient condition that we
will later prove. We also show a bound on the variance of regret in these cases.

Note that we also consider transaction costs for transferring wealth between
assets (similar to Blum and Kalai [6]), as there is usually costs associated with
buying and selling financial assets in practice (spreads, brokerage charge, etc.).
However, we will prove that sublinear expected regret (over all possible price
paths) is not attainable in the case of non-zero transaction costs (unless we
assume that the price increases in each time step are independently distributed),
unlike in the case of zero transaction costs.

Lastly, we show that our portfolio selection model can be computed efficiently
using linear programming.

1.2 Related Work

The first published work combining the studies of portfolio theory with regret
minimisation was by Cover [8]. Since then, there has been much follow up work
and extensions to Cover’s original portfolio model. Of particular interest to us,
Blum and Kalai [6] extended the original model to account for transaction costs.
However, the transaction costs plays a minor role in the Blum and Kalai model as
it does not affect the decision process beyond that the penalty reduces the wealth
that was retained. In particular, there was no cost-versus-wealth tradeoff, to
assess whether shifting the portfolio would be beneficial over the cost this would
incur, due to the limitation of the CRP model. We introduced a counterpart
to the above that balances the reward from rebalancing the portfolio (based
on information received from a price prediction) against the transaction cost
incurred, and find an optimal point in between as to maximise cost adjusted
wealth again.



Transaction costs aside, we compare our model to a less restrictive benchmark
than in [8] because the best greedy portfolio is at least as good as the best
CRP (in terms of the wealth obtained). However, we instead proved a bound on
expected regret (as a function of the distributions Dt) rather than worst-case
regret, as we assume that we have additional knowledge in the form of price
predictions, bringing us from an adversarial setting to a stochastic one. Note
that when considering non-zero transaction costs, neither the greedy portfolio
nor the best CRP is strictly better than the other.

Some other works that introduced notions similar to predictions [9, 3] used
a concept called “side information”. This is where the adversary reveals a side
information (say, an integer between 1 and y) and the CRP restriction is applied
on each state separately. In particular, there is now y different CRPs that may
be used, depending on the side information in that particular time step. The
benchmark in this case is the best set of y CRP’s that achieves the best wealth,
given the observed sequence of side information. However, the regret bound of
this model assumes that y is finite and does not grow with T , meaning that
sublinear regret does not hold if the benchmark model uses a different portfolio
in every time step (i.e., the side information never repeats). We do not have such
restriction in our model.

More recent efforts to incorporate predictions into online learning problems
can be found in [7, 16]; these works look at the more general case of convex loss
functions, but their regret is still benchmarked against the best CRP (which
is substantially weaker than the best greedy portfolio). Some other variants of
universal portfolio models can be found in [1, 2, 4, 18, 15, 11, 10, 13]. Most of these
models are based on the idea of taking a weighted combination of CRPs over
the set of all possible portfolio vectors.

Portfolio optimisation is a fundamental problem studied in mathematical fi-
nance literature [17, 14], wherein models with stochastic price changes is the
norm. For example, price changes distributed log-normally is analogous to Geo-
metric Brownian Motion [5, 12, 14], a well-understood model used in that field.
However, our study and model, motivated by a machine learning perspective to
maximise growth-rate of wealth (as opposed to, say, mean-variance optimisation
in modern portfolio theory) yields incomparable results.

2 Preliminaries

Consider the scenario where we have m assets available for trading over T time
steps. Define xt = (xt(1), . . . , xt(m)) ∈ Rm+ as a real-valued vector of price
relatives at time step t; the i-th element of this vector is the ratio of the respective
true market prices of Asset i at time t and time t − 1. For convention, xt is
defined for 1 ≤ t ≤ T , and we denote by xT the vector (x1, . . . , xT ). The space B
of portfolio vectors is defined as

B := {b ∈ Rm+ :

m∑
i=1

b(i) = 1},



where b(i) is the proportion of the portfolio b’s total wealth allocated to Asset i.
Typically, we may need to redistribute wealth between assets as to obtain the
portfolio vector chosen for the next time step. We will call this process of redis-
tributing wealth rebalancing. We denote by θ(b, b′, x) the multiplicative factor of
decrease in wealth due to rebalancing from portfolio b (after observing the price
change x) to portfolio b′, which we will define in more details in the next section.
Then, we can define the wealth of a portfolio model (b1, . . . , bT ) as

ST =

T∏
t=1

btxtθ(bt−1, bt, xt−1).1

As a convention, we assume that there are no transaction costs associated with
the initial positioning before the first time step: that is, b0 := b1, x0 = (1, . . . , 1),
and, thus, θ(b0, b1, x0) = 1. Broadly speaking, ST is the product of the wealth
change across all time steps t = 1, . . . , T , where, at each step, we first pay a
factor of θ(bt−1, bt, xt−1) transaction cost for rebalancing bt−1 to bt, and then
experience a change btxt in wealth, once the price change is observed. Similarly,
for the portfolio models denoted as (b̂1, . . . , b̂T ) and (b∗1, . . . , b

∗
T ), respectively,

we will use ŜT and S∗T , respectively, to denote the wealth generated by the
corresponding portfolio model.

Note that a CRP (from [8]) imposes the additional constraint that the port-
folio vector is the same throughout every time step, that is, b1 = ... = bT .

Although the portfolio model investigated here has the restriction that all
the wealth must be invested in one of the m assets, this can be extended to a
portfolio of m + 1 assets where the first m asset is as before, and the last one
represents cash. Therefore, the returns xt now has m + 1 dimension where the
last element could represent risk-free interest rate, analogous to much of the
work in financial mathematics.

2.1 Transaction Costs

The concept of transaction costs was first introduced into the study of online
portfolios selection by Blum and Kalai [6], wherein their model charge a fixed
percentage of commission on the purchase, but not on the sale, of assets. This
is equivalent to charging commission on the purchase and sale of assets equally,
as the wealth from any asset we sold will have to be used to purchase another
asset (by the constraints of the problem setting). We will use the same model
here, though the choice of model doesn’t significantly affect our results.

Given portfolio vectors bt−1, bt ∈ B and price-relatives vector xt−1, we want
to rebalance from the vector b′t−1 := bt−1 · xt−1 ∈ Rm to bt ∈ B ⊂ Rm. Given a
transaction cost factor c ∈ [0, 1] indicating the proportion of cost to be paid from
the value of assets purchased, the proportion of wealth retained after rebalancing
can be expressed recursively as

θ := θ(bt−1, bt, xt−1) = 1− c
∑
i:βi>0

βi,

1 The notations btxt is used as a short-hand for vector dot product.



where βi = θbt(i) − bt−1(i) · xt−1(i) = θbt(i) − b′t−1(i) indicates the quantity
of Asset i that needs to be sold or bought, depending on its sign. Intuitively, θ
represents the proportion of the total wealth left after rebalancing. In the worst
case, the market value of b′ is at least 1 − c of the market value of b after
rebalancing. In particular, rebalancing a portfolio will always retain at least 1−c
proportion of its wealth.

2.2 Problem Setting

At time t ∈ [T ], suppose our model has access to a prediction such that it follows
some probability distribution with respect to the later observed price change:
that is, x̃t ∼ Dt(xt). Note that the distribution Dt may depend on the current
time step t (hence, the subscript) and xt, possibly hiding further dependencies
on additional parameters such as variance. Based on this prediction, we can
compute a portfolio vector as to optimise the wealth.

Definition 1 (Portfolio Model). For each t ∈ [T ], given a predicted price-
change x̃t of the observed price change xt such that x̃t ∼ Dt(xt) for some prob-
ability distribution Dt, the portfolio vector at time t is specified by

b̂t := arg maxb∈B bx̃tθ(b̂t−1, b, xt−1).

Our benchmark model, which we call the optimal greedy portfolio, is defined sim-
ilarly as, for each time t,

b∗t = arg maxb∈B bxtθ(b
∗
t−1, b, xt−1).

Note that the above models considers the tradeoff between the transaction
cost of shifting to a “better” portfolio against the expected benefit of doing such
a rebalancing given the prediction or actual outcome, respectively. In the case
where the optimisation yields multiple solutions, we canonically choose the one
with the least transaction costs. This will be made more precise in Section 5.

3 Main Results

In this section, we present our technical contributions. In particular, we investi-
gate how close the wealth of our portfolio model is to the benchmark model, in
expectation over the random choices of x̃t ∼ Dt(xt) and adversarially chosen xt,
for t ∈ [T ].

Firstly, we show the expected-regret bound of the portfolio model b̂ against b∗,
in terms of the distribution of the predicted price change x̃t relative to the later
observed price change xt. This will lead us to a sufficient condition to obtain a
sublinear expected regret (and, additionally, sublinear variance of regret) in the
case of zero transaction costs. Then, we show that sublinear expected regret is
unattainable in general in the case of non-zero transaction costs, no matter how
small c > 0 is.



3.1 Expected-Regret Bound

As a measure of performance, we consider the expected-regret E[R] of our port-
folio model against the optimal greedy portfolio model: namely,

Ex̃t∼Dt(xt)

[
max
xT

(
logS∗T − log ŜT

) ]
.

This can be interpreted as enumerating through all possible price predictions x̃T

and choosing the outcome of price sequence xT that maximises regret for each
choice of x̃T . Each of these choices of x̃T occurs with some probability depending
on xT and Dt for t ∈ [T ], and we take the expectation over these probabilities.

We analyse the expected regret E[R], where the choices of portfolio vectors
depend directly on the random choices of x̃t ∼ Dt(xt) and xt is chosen adversar-
ially, for each t ∈ [T ]. The theorem below gives an upper bound on the expected
regret as a function of the distributions Dt of predictions in each time step.

Theorem 2. The expected regret of our portfolio model from Definition 1 can
be bounded from above as

E[R] ≤ γ + 2

T∑
t=1

∫ ∞
0

Pr
x̃t∼Dt(xt)

[x̃t 6∈ (e−zxt, e
zxt)] dz ,

where γ accounts for the regret arising from the positioning error of our portfolio
and is defined as

γ = −
T∑
t=1

E
[

log
θ(b̂t−1, b

∗
t , xt−1)

θ(b∗t−1, b
∗
t , xt−1)

]
.

Proof. We fix some time t and consider the ratio of the single-time-step wealth
change of our portfolio to that of the benchmark at time t in order to bound the
regret arising from that time step. The regret associated with the time step t has
two sources: positioning error of the current portfolio that results in transaction
costs and inaccurate price predictions. We define

ρt =
θ(b̂t−1, b

∗
t , xt−1)

θ(b∗t−1, b
∗
t , xt−1)

to capture the regret arising from the positioning error of the portfolio at time
step t: for example, when b∗t−1 was in a better position than b̂t−1 to minimise
transaction costs when rebalancing at time t.

Now, suppose that (1− δ)xt � x̃t � (1− δ)−1xt,2 at time step t, for some δ

such that 0 ≤ δ < 1. Then, for any b̂t, b
∗
t , b̂t−1, b

∗
t−1 ∈ B, we have the following

2 The notations �, �, ≺, and � denote component-wise vector inequalities.



bound on the ratio of the single-time-step wealths:

b̂txtθ(b̂t−1, b̂t, xt−1)

b∗txtθ(b
∗
t−1, b

∗
t , xt−1)

≥ (1− δ) b̂tx̃tθ(b̂t−1, b̂t, xt−1)

b∗txtθ(b
∗
t−1, b

∗
t , xt−1)

(1)

≥ (1− δ)2 b̂tx̃tθ(b̂t−1, b̂t, xt−1)

b∗t x̃tθ(b
∗
t−1, b

∗
t , xt−1)

(2)

≥ (1− δ)2ρt. (3)

In the above, (1) is due to xt � (1 − δ)x̃t, (2) is due to x̃t � (1 − δ)xt, and (3)
is due to the fact that

b̂tx̃tθ(b̂t−1, b̂t, xt−1) ≥ b∗t x̃tθ(b̂t−1, b∗t , xt−1) = ρtb
∗
t x̃tθ(b

∗
t−1, b

∗
t , xt−1),

as b̂t was chosen to maximise its single-time-step wealth by Definition 1. For
each time step t ∈ [T ], we define deviation δt of xt and x̃t as

δt := min{δ ≥ 0 | (1− δ)xt � x̃t � (1− δ)−1xt}.

Intuitively, this is the deviation of the predicted price change from the observed
price change. We can now calculate the expected regret as follows.

E[R] = E
[

max
xT

log
(S∗T
ŜT

)]
= E

[
max
xT

log
( T∏
t=1

b∗txtθ(b
∗
t−1, b

∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

)]
≤ E

[
log
( T∏
t=1

(1− δt)−2ρ−1t
)]

(4)

≤
T∑
t=1

2E
[
− log(1− δt)

]
− E

[
log ρt

]
, (5)

where (4) is by the inequality from (3), and (5) follows from linearity of expec-

tation. We now will now use γ = −
∑T
t=1 E[log ρt] to denote the “positioning

error,” and continue our analysis of the first term on the right hand side of the
inequality.

T∑
t=1

E
[
− log(1− δt)

]
=

T∑
t=1

∫ ∞
0

Pr
x̃t

[− log(1− δt) ≥ z] dz

=

T∑
t=1

∫ ∞
0

Pr
x̃t

[1− δt ≤ e−z] dz,

=

T∑
t=1

∫ ∞
0

1− Pr
x̃t

[1− δt > e−z] dz,

=

T∑
t=1

∫ ∞
0

1− Pr
x̃t

[e−zxt ≺ x̃t ≺ ezxt] dz,



where the last line above is obtained from applying the definition of δt, giving
us the bound on expected regret. ut

Note that the quantity γ in Theorem 2 captures the positioning error of our
model arising from transaction costs. Hence, in the absence of transaction costs
(that is, when c = 0), we have that γ = 0. In fact, we later prove in Section 3.3
that, in general, γ = Ω(T ) for non-zero transaction costs (that is, when c > 0),
by showing that there exists a sequence xT that yields an expected regret at
least linear in T .

We also observe that γ = 0 in the weaker case when xt is a random variable
that is independent of xt−1 (hence, also independent of b∗t−1 and b̂t−1), for all
time steps t ∈ [T ], whereas Theorem 2 is stronger as it makes no assumption on
how xt are chosen. This is because

E[log θ(b∗t−1, b
∗
t , xt−1)] = E[log θ(b̂t−1, b̂t, xt−1)],

intuitively meaning that the random choice of xt and x̃t are just as likely
be favourable to b∗t−1 as it is to b̂t−1. For example, suppose that we define
x̃t = (1, ..., 1) and xt is drawn from some log-normal distribution with mean x̃t.
Then, this is equivalent to assuming that the returns xt follows a Geometric
Brownian Motion and that the current price is the best prediction of the next
time step’s price; similar to the assumption surrounding much of the work in
financial mathematics.

Finally, setting γ aside, the result above gives us a good intuition on what the
expected regret looks like. Namely, in each time step the regret can be thought
of to be no larger than the sum of an integral of the tail probabilities. Having a
small expected regret then hinges on bounding these tail probabilities.

3.2 Variance-of-Regret Bound

We can now prove a bound on the variance of regret, using much of the ideas
from the proof of the bound on expected regret in Theorem 2.

Theorem 3. The variance of regret of our portfolio model from Definition 1
can be bounded from above as

Var[R] ≤ η + 4

T∑
t=1

∫ ∞
0

Pr
x̃t∼Dt(xt)

[x̃t 6∈ (e−
√
zxt, e

√
zxt)] dz ,

where η accounts for the variance in the regret arising from the positioning error
and the covariance of the single-time-step wealth ratios, defined as

η = −
T∑
t=1

Var
[

log
θ(b̂t−1, b

∗
t , xt−1)

θ(b∗t−1, b
∗
t , xt−1)

]
+

T∑
t=1

∑
j 6=t

cov
[b∗txtθ(b∗t−1, b∗t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)
,
b∗jxjθ(b

∗
j−1, b

∗
j , xj−1)

b̂jxjθ(b̂j−1, b̂j , xj−1)

]
.



Proof.

Var[R] = Var
[

max
xT

log
(S∗T
ŜT

)]
= Var

[
max
xT

log
( T∏
t=1

b∗txtθ(b
∗
t−1, b

∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

)]
≤ Var

[
log
( T∏
t=1

(1− δt)−2ρ−1t
)]

≤ η + 4

T∑
t=1

Var
[
− log(1− δt)

]
,

where η is the term representing the positioning errors and covariance terms, as
described in the theorem statement. We continue to simplify the remaining part
of the equation, making use of the inequality Var[R] ≤ E[R2]. Thus, we get

T∑
t=1

Var
[
− log(1− δt)

]
≤

T∑
t=1

E
[
(− log(1− δt))2

]
=

T∑
t=1

∫ ∞
0

Pr
x̃t

[− log(1− δt) ≥
√
z] dz

=

T∑
t=1

∫ ∞
0

Pr
x̃t

[1− δt ≤ e−
√
z] dz,

=

T∑
t=1

∫ ∞
0

1− Pr
x̃t

[1− δt > e−
√
z] dz,

=

T∑
t=1

∫ ∞
0

1− Pr
x̃t

[e−
√
zxt ≺ x̃t ≺ e

√
zxt] dz,

where the last line above is obtained from applying the definition of δt (as defined
in the proof of Theorem 2), giving us the desired result. ut

Similarly to the case for expected regret discussed in the previous section, we
also have that η = 0 in the zero-transaction cost scenario (that is, c = 0) or xt
is independently distributed from xt−1 for t ∈ [T ].

3.3 Linear Expected Regret for Non-zero Transaction Costs

We will now show that for any class of non-trivial distributions Dt, the expected-
regret bound above will not be sublinear for non-zero transaction cost (in effect,
showing that γ is not necessarily sublinear for any c > 0). This is because
there exists a sequence of returns xt for t ∈ [T ] that will favour b∗t position,
hence, yielding a large enough long-term regret. Here, we define a non-trivial



distribution as one where the preimage of the cumulative distribution function
is non-empty at some value inside a constant interval around 1

2 . Note that any
class of continuous distributions satisfies this criteria.

Theorem 4. Given non-trivial Dt, for all t ∈ [T ], E[R] = Ω(T ) when transac-
tion cost c is non-zero.

Proof. To prove that the expected regret is not necessarily sublinear in the case
of non-zero transaction cost, it is enough to come up with a sequence of xt that
breaks this sub-linearity. Therefore, we will give a way to construct such xt for
each t ∈ [T ] in the two-asset case (m = 2), where b∗t and b̂t will always take the
values of either (0, 1) or (1, 0) by our construction of the re-balancing scheme
from Section 5.

For time step t, assume that b̂t−1 = (0, 1), without loss of generality, with b∗t−1
is (0, 1) or (1, 0). We will calculate the single-time-step loss

b∗txtθ(b
∗
t−1, b

∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

in these two cases separately.

State 1 (Different) b∗t−1 = (1, 0)

The adversary chooses xt = (1, 1− c), resulting in a single-time-step loss of
1

1−c , regardless of the choice x̃t ∼ Dt(xt).

State 2 (Same) b∗t−1 = (0, 1)

The adversary chooses xt = (ξt, 1), where ξt is chosen such that

Pr
x̃t∼Dt((ξt,1))

[ x̃t(1)

x̃t(2)
>

1

1− c

]
=

1

2
.

Intuitively, this is the choice of price relative vector where the portfolio model
(as represented by b̂t) has equal probabilities of shifting or staying put. This

implies that Prx̃t∼Dt(xt)[b̂t = b∗t ] = 1
2 , and the single-time-step loss may be

as small as 1 in this case. Note that this choice of ξt exists if the preimage
of the CDF of Dt at 1

2 is non-empty. One can easily extend this proof to
cases where the preimage of the CDF is non-empty at some value inside a
constant interval around 1

2 .

With this information, we can model the dynamics of the portfolio as a
Markov chain with these two states (Different and Same). The transition prob-
ability matrix of that Markov chain, assuming worst-case, i.e., the lowest prob-
ability of staying in “different”, is (

0 1
1
2

1
2

)
,



which implies a limiting distribution π = ( 1
3 ,

2
3 ). Using this, the expected regret

(over all possible xt) can be lower-bounded by the linear expected regret (over
the particular choice of xt, as described above).

E[R] = E
[

max
xT

log
(S∗T
ŜT

)]
≥ E

[
log
(S∗T
ŜT

)]
=

T∑
t=1

E
[

log
b∗txtθ(b

∗
t−1, b

∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

]
= −1

3

T∑
t=1

log(1− c) = Θ(T ),

where the last line follows from the fact that the portfolio needs to shift all its
wealth in one third of the steps in the long run (due to the limiting distribution
of the Markov chain above), each of which incurs a loss factor of 1− c. ut

So now we have established that we cannot hope for sublinear expected regret
in the presence of transaction costs, no matter the choice of Dt (as long as it is
non-trivial). However, we will later show in Section 4 that a few sensible choices
for Dt will indeed yield sublinear expected regret (and variance of regret) in the
case c = 0.

4 Special Cases for the Distributions of Predictions

Given the above results are for a generically distributed x̃t ∼ Dt(xt), we will
now look at some particular cases for Dt and compute the required quality of
prediction in order to achieve sublinear expected regret. Herein we will assume
that c = 0, as Theorem 4 shows that we cannot hope for sublinear expected
regret in the presence of transaction costs.

Firstly, we shall assume that Dt is parametrised by two variables µt (mean)
and σt (standard deviation). We will look only at log-returns (rather than ab-
solute returns); this is quite a standard notion in financial mathematics for a
number of reasons [5, 12, 14]. In particular, we will say that the log-predicted
returns (ln x̃t) are distributed around the mean (defined as the log-observed re-
turns, lnxt) with some standard deviation σt. Formally, ln x̃t ∼ Dln xt,σ2

t
for some

distribution D, or simply x̃t ∼ lnDln xt,σ2
t

for short-hand. As our portfolio vector
is multi-dimensional, we will use σt = (σt, ..., σt) ∈ Rm+ , apply the logarithm and
distribution element-wise: that is,

lnxt = ln(xt(1), ..., xt(m)) = (lnxt(1), ..., lnxt(m)),

and, thus,
lnDln xt,σ2

t
= lnDln xt(1),σ2

t
× ...× lnDln xt(m),σ2

t
.



Note that Chebyshev’s inequality is too loose to obtain a reasonable bound
for a generalised distribution D:

E[R] ≤ 2

T∑
t=1

∫ ∞
0

Pr
x̃t∼Dt(xt)

[x̃t 6∈ (e−zxt, e
zxt)] dz ≤ 2

T∑
t=1

∫ ∞
0

σ2
t

z2
dz,

where the last inequality is due to Chebyshev’s, which states that

Pr(|x− µ| ≥ z) ≤ σ2
t /z

2.

As a result, the last integral evaluates to +∞. Therefore, the next three subsec-
tion looks at the required σt, for t ∈ [T ], to obtain sublinear expected regret for
three particular cases of D: uniform, linear, and normal.

4.1 Log-Uniformly Distributed Predictions

Suppose that x̃t ∼ lnUln xt,σ2
t
, where U is the uniform distribution on the log-

returns between the range [−σt, σt] with the following probability density func-
tion

f(y) =

{
1

2σt
if 0 ≤ |y − lnxt| ≤ σt,

0 otherwise.

In this case, applying Theorem 2 and Theorem 3 yields

E[R] ≤ 2

T∑
t=1

∫ σt

0

1− z

σt
dz =

T∑
t=1

σt,

Var[R] ≤ 4

T∑
t=1

∫ σt

0

1−
√
z

σt
dz = 4

T∑
t=1

σt −
2

3

√
σt.

Thus, σt → 0 at any speed will yield sublinear expected regret and variance of
regret, hence, making no other restriction on the required rate of learning.

4.2 Log-Linearly Distributed Predictions

Suppose that x̃t ∼ lnLln xt,σ2
t
, where L is the linearly-decreasing distribution

with largest density at the mean, lnxt. More precisely, it has the following prob-
ability density function

f(y) =

{
1
σt
− |y−ln xt|

σ2
t

if 0 ≤ |y − lnxt| ≤ σt,
0 otherwise.

In this case, applying Theorem 2 and Theorem 3 yields

E[R] ≤ 2

T∑
t=1

∫ σt

0

(1− 2
z

σt
+
z2

σ2
t

) dz = 2

T∑
t=1

σt
3

=
2

3

T∑
t=1

σt,



Var[R] ≤ 4

T∑
t=1

∫ σt

0

(1− 2

√
z

σt
+

z

σ2
t

) dz = 4

T∑
t=1

σt −
4

3

√
σt +

1

2
= Θ(T ).

so σt → 0 at any speed will yield sublinear expected regret, but the bound on
the variance of regret is linear in T .

4.3 Log-Normally Distributed Predictions

We will now look at the particular case when Dt is log-normally distributed
(analogous to Geometric Brownian Motion). Suppose that x̃t ∼ lnNln xt,σ2

t
, then

E[R] ≤ 4

T∑
t=1

∫ ∞
0

Pr
y∼N0,1

[y > z/σt] dz.

To achieve a sublinear expected regret then depends on the ability to obtain an
appropriate sequence of predictions with σt such that

1

T

T∑
t=1

∫ ∞
0

Pr
y∼N0,1

[y > z/σt] dz → 0,

as T → ∞. This has a very natural interpretation; the above condition can be
viewed as an integral over the tail probabilities of the standard normal distribu-
tion, where the size of the tail is determined by σt.

Clearly, σt = O(1) for all t ∈ [T ] is not a sufficient condition as the tail
probabilities will not tend to zero for small values of z, so we must necessarily
have that σt → 0 as t → ∞. However, it is unclear what rate of convergence
would be required for this condition to hold. We suspect that σt = O(1/ log t)
suffices, but this remains to be shown and leaves an interesting open question.
Similarly, the variance of regret in this case can be bounded as

Var[R] ≤ 8

T∑
t=1

∫ ∞
0

Pr
y∼N0,1

[y >
√
z/σt] dz.

5 Portfolio Computation

The θ function can be viewed as a variant of the earth mover’s distance, which,
in turn, can be formulated as a transportation or flow problem and solved using
a linear program. Here, we present an LP for computing b̂ (and, hence, for
similarly computing b∗) by first computing θ. The input to the computation is

the original allocation vector w = (w1, . . . , wm) (corresponding to Kb̂, where K
is the total wealth before rebalancing and b ∈ B) and the target portfolio vector
given as q = (q1, . . . , qm) (with

∑
i qi = 1). The variables of the LP are the



wealth W resulting after the rebalancing and fij , for i, j ∈ [m], that corresponds
to wealth that needs to be transferred from Asset i to Asset j.

maxW

subject to∑
j∈[m]

fij ≤ wi ∀i = 1, . . . ,m (6)

fjj + (1− c) ·
∑
i∈[m]

i 6=j

fij ≥W · qj ∀j = 1, . . . ,m (7)

fij ≥ 0 ∀i, j = 1, . . . ,m (8)

The constraints in (6) ensure that the wealth transferred out of each asset is
bounded by the current wealth in that asset. The constraints in (7) ensure that
the wealth that stays in each asset plus the wealth transferred into that asset,
minus the incurred transaction costs, are sufficient to reach the target portfolio
vector with a total wealth of W . Finally, the flow of wealth will always be positive
by (8). Note that the sets of constraints in (6) and (7) will be satisfied tightly
in an optimal solution. First of all, for any i ∈ [m], total flow

∑
j∈[m] fij out of

Asset i will be equal to wi, because any increase in the total flow
∑
i,j fij can

be distributed over the assets according to q, creating slack in each constraint
in (7) and allowing a strictly larger value for W . Similarly, if the flow into any
Asset j, given as fjj +(1−c) ·

∑
i∈[m],i6=j fij , was strictly larger than W ·qj , then

this excess flow can be shifted to other assets to create slack in each constraint
in (7), which, in turn, allows W to be increased. The fact that the constraints
in (6) and (7) are tight for an optimal solution shows that all the wealth in
the previous time step is used during rebalancing and the resulting portfolio
distribution adheres to q. Finally, by the maximisation of W , we get that the
optimal solution to the LP gives the value of θ, and also b̂ (by summing up
all of the flow in/out of each asset fij). In the case where there are multiple
optimal solutions, we choose the one with the lowest

∑
j∈[m] fij , for i = 1, ...,m

sequentially; that is, we break ties by minimising the outflow from the smallest
to the largest i.
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