26,955 research outputs found
Radio Properties of the Auroral Ionosphere, Final Report (Phase I)
It has been found in recent years that a study of the fluctuations
in the signals received from radio stars affords a powerful means of
investigating the irregular structure of the ionosphere. In 1955 studies
of this type, using frequencies of 223 Me and 456 Me, were initiated
at the Geophysical Institute, with a view to investigating the smallscale
structure of the highly disturbed auroral ionosphere. The purpose
of this report is to present a complete description of the initial experimental
arrangement. Further developments of the equipment and some
results of analysis of the data have been presented in Quarterly Progress
Reports covering the period since 1 June 1956,
The report is divided into three sections. Section I contains a
description of the basic philosophy of the experiment with an elementary
discussion of the various parameters involved. Section II contains a
brief description of the actual field installation, and Section III is
devoted to the electronic design features.
The diagrams pertaining to each section are located at the end of
the section.Air Force Contract No. AF 30(635)-2887
Project No. 5535 - Task 45774
Rome Air Development Center, Griffiss Air Force Base
Rome, New YorkABSTRACT AND GENERAL INTRODUCTION -- [SECTION I] Investigation of the Ionosphere Using Extra- Terrestrial Radio Sources : 1.1 Introduction ; 1.2 Extra-Terrestrial Sources ; Apparent Positions ; 1.3 Instrumental Techniques for the Study of Radiation from Radio Stars ; Interferometer Methods ; Advantages of the Phase-Switch Interferometer ; Interferometer Parameters ; 1.5 Limitations on Accuracy -- References -- [SECTION II] The Field Installation : 2.1 Introduction ; 2.2 The Radio Telescope Towers ; 2.3 The Antennas ; 2.4 Acknowledgements -- [SECTION III] Electronic Design of Phase-Switch Interferometers : 3.1 Introduction ; 3.2 223 Mc Phase-Switch Equipment ; 3.3 456 Mc Phase-Switch Equipment ; 3.4 Auxiliary EquipmentYe
Criteria for generalized macroscopic and mesoscopic quantum coherence
We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of
eigenstates of an observable, and develop some signatures for their existence.
We define the extent, or size of a superposition, with respect to an
observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that
superposition. Such superpositions are referred to as generalized -scopic
superpositions to distinguish them from the extreme superpositions that
superpose only the two states that have a difference in their prediction
for the observable. We also consider generalized -scopic superpositions of
coherent states. We explore the constraints that are placed on the statistics
if we suppose a system to be described by mixtures of superpositions that are
restricted in size. In this way we arrive at experimental criteria that are
sufficient to deduce the existence of a generalized -scopic superposition.
The signatures developed are useful where one is able to demonstrate a degree
of squeezing. We also discuss how the signatures enable a new type of
Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
Spin entanglement, decoherence and Bohm's EPR paradox
We obtain criteria for entanglement and the EPR paradox
for spin-entangled particles and analyse the effects of decoherence caused
by absorption and state purity errors. For a two qubit photonic state,
entanglement can occur for all transmission efficiencies. In this case,
the state preparation purity must be above a threshold value. However,
Bohm’s spin EPR paradox can be achieved only above a critical level of
loss. We calculate a required efficiency of 58%, which appears achievable
with current quantum optical technologies. For a macroscopic number of
particles prepared in a correlated state, spin entanglement and the EPR
paradox can be demonstrated using our criteria for efficiencies η > 1/3
and η > 2/3 respectively. This indicates a surprising insensitivity to loss
decoherence, in a macroscopic system of ultra-cold atoms or photons
Design and performance of a high-pressure-ratio, highly loaded axial-flow transonic compressor space
A 50-cm-diam. axial-flow transonic compressor stage with multiple-circular-arc blades was designed and tested. At design speed, a rotor peak efficiency of 0.85 occurred at an equivalent weight flow of 29.3 kg/sec. Stage peak efficiency was 0.79 at 28.6 kg/sec. Stage total pressure ratio at peak efficiency was 1.84. The stall margin at design speed was 5 percent. Rotor and stator losses were higher than predicted. The stator choked at design flow
Future air traffic - A study of the terminal area
Systems analysis approach to airport planning and predicting terminal facility and aircraft demands in year 2000 for air traffic control system
Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox
We formally link the concept of steering (a concept created by Schrodinger
but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett.
98, 140402 (2007)] and the criteria for demonstrations of
Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913
(1989)]. We develop a general theory of experimental EPR-steering criteria,
derive a number of criteria applicable to discrete as well as
continuous-variables observables, and study their efficacy in detecting that
form of nonlocality in some classes of quantum states. We show that previous
versions of EPR-type criteria can be rederived within this formalism, thus
unifying these efforts from a modern quantum-information perspective and
clarifying their conceptual and formal origin. The theory follows in close
analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality,
entanglement), and because it is a hybrid of those two, it may lead to insights
into the relationship between the different forms of nonlocality and the
criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added
journal-ref and DO
Design and Use of a Phase-Sweep Interferometer for the Study of Radio Star Scintillations in the Auroral Zone.
The usefulness of the phase-sweep technique
in interferometers designed to record radio star
signals is discussed. Interferometers of this
type have been built for use at frequencies of 223
and 456 Mcs., and their electronic design is explained
in some detail.
The report also includes a discussion of the
automatic data processing system which has been
designed to operate in conjunction with the interferometers
in the analysis of the amplitude scintillation
of radio stars.Air Force Contract No. 30(635)-2887
Project No. 5535 - Task 45774
Rome Air Development Center, Griffiss Air Force Base
Romej New YorkList of Figures -- Abstract -- Introduction -- Total Power Interferometer -- Phase-Sweep Interferometer -- 223 Mes. Equipment : Circuit description ; Mixers ; Phase-lock control unit ; IP amplifier ; Tuned audio amplifier ; DC amplifier ; Auxiliary equipment -- 456 Mes. Equipment -- Digitizing Equipment -- Calculation of Mean Power Fluctuation -- Acknowledgements -- References -- FiguresYe
Flux rope, hyperbolic flux tube, and late EUV phases in a non-eruptive circular-ribbon flare
We present a detailed study of a confined circular flare dynamics associated
with 3 UV late phases in order to understand more precisely which topological
elements are present and how they constrain the dynamics of the flare. We
perform a non-linear force free field extrapolation of the confined flare
observed with the HMI and AIA instruments onboard SDO. From the 3D magnetic
field we compute the squashing factor and we analyse its distribution.
Conjointly, we analyse the AIA EUV light curves and images in order to identify
the post-flare loops, their temporal and thermal evolution. By combining both
analysis we are able to propose a detailed scenario that explains the dynamics
of the flare. Our topological analysis shows that in addition to a null-point
topology with the fan separatrix, the spine lines and its surrounding
Quasi-Separatix Layers halo (typical for a circular flare), a flux rope and its
hyperbolic flux tube (HFT) are enclosed below the null. By comparing the
magnetic field topology and the EUV post-flare loops we obtain an almost
perfect match 1) between the footpoints of the separatrices and the EUV
1600~\AA{} ribbons and 2) between the HFT's field line footpoints and bright
spots observed inside the circular ribbons. We showed, for the first time in a
confined flare, that magnetic reconnection occured initially at the HFT, below
the flux rope. Reconnection at the null point between the flux rope and the
overlying field is only initiated in a second phase. In addition, we showed
that the EUV late phase observed after the main flare episode are caused by the
cooling loops of different length which have all reconnected at the null point
during the impulsive phase.Comment: Astronomy & Astrophysics, in pres
- …