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Abstract: We obtain criteria for entanglement and the EPR paradox
for spin-entangled particles and analyse the effects of decoherence caused
by absorption and state purity errors. For a two qubit photonic state,
entanglement can occur for all transmission efficiencies. In this case,
the state preparation purity must be above a threshold value. However,
Bohm’s spin EPR paradox can be achieved only above a critical level of
loss. We calculate a required efficiency of 58%, which appears achievable
with current quantum optical technologies. For a macroscopic number of
particles prepared in a correlated state, spin entanglement and the EPR
paradox can be demonstrated using our criteria for efficiencies η > 1/3
and η > 2/3 respectively. This indicates a surprising insensitivity to loss
decoherence, in a macroscopic system of ultra-cold atoms or photons.
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1. Introduction

In the development of quantum information science, entanglement is central. It is at the heart
of the Einstein-Podolsky-Rosen (EPR) paradox[1] and Bell’s theorem[2], which draw a clear
delineation between local realistic and quantum theories. Entanglement is also considered a
vital resource for future quantum technologies, both for photonic systems and for applications
involving ultra-cold quantum gases.
Crucial to the generation and detection[3, 4, 5, 6] of entanglement is decoherence[7], which

is the degradation of a pure state into a mixed state due to coupling with the environment. De-
coherence can degrade or even destroy entanglement. Sensitivity to decoherence, particularly
for large systems, is thought to explain the transition from the quantum to classical regime[8].
However, decoherence can be caused by many different physical mechanisms, including parti-
cle loss, phase errors, and mixing with uncorrelated particles.
This leads to the following fundamental question. When is entanglement and EPR correla-

tion preserved between two N particle systems, if each is independently decohered? Yu and
Eberly[9, 10] studied the issue for N = 1, for a certain type of decoherence, and showed that
entanglement can be destroyed at a finite time. This is termed “entanglement sudden death”
(ESD). The existence of ESD – which is experimentally verified[11] – has far reaching im-
plications for quantum information, since error correcting protocols may restore a degraded
but nonzero entanglement[12, 13, 14]. However, these questions have not been investigated in
detail for EPR correlations, which are more sensitive to decoherence than entanglement per se.
In this communication, we obtain quantitative criteria applicable to Bohm’s original two-

particle spin realization[15] of the EPR state, and generalize these to 2N-particle states which
display spin entanglement. We investigate both EPR correlations and entanglement for these
correlated multi-particle states. Two distinct types of decoherence are investigated. We show
that entanglement can resist decoherence even for the case of large N. To understand this fea-
ture, we distinguish between noise and loss decoherence. With noise decoherence, the wrong
information (“up” instead of “down”) is given, while loss decoherence causes an absence of
information and broadening[16] (e.g. the changing of a qubit into a qutrit in the lossy situation
of section 3) of the measured Hilbert space.
The decoherence causing entanglement sudden death is essentially noise. It leads to density

matrices that are mixtures with random states, with state purity R= Tr
[
ρ2

]
< 1. In the Werner

state[17, 18], for example, the entangled two qubit Bell state is mixed with a random state, and
complete disentanglement occurs once R≤ 1/3[3].
Loss decoherence gives a completely different result. In the case of the photonic two qubit

Bell state[18, 19, 20], used extensively in many seminal experiments and applications, loss
arises from absorption of photons into the environment, and is the major source of decoherence.
This loss causes an absence of a “count”, the latter arising with probability η .
The key result of the present analysis is that loss in the case of a Bell state only reduces the

entanglement, which remains detectable at all η > 0. We extend this to treat EPR correlations,
which are more sensitive to decoherence. Both results are more experimentally accessible than
the violation of Bell inequalities, which require high efficiencies (η > .83)[21, 16].We also treat
systems with macroscopic particle number. Such cases have significance both as fundamental
tests of quantum measurement theory, and as potentially important quantum technologies for
measurements both with photons and with ultra-cold bosonic atoms in correlated states.

2. Bell state entanglement with losses

We start with Bohm’s gedanken-experiment — often called the Bell[2] singlet state. This could
involve any particles having internal degrees of freedom, for example photons or atoms. In the
laboratory, there is noise in the form of randomly polarised particles, and various forms of loss
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Fig. 1. Schematic diagram of Bohm’s EPR experiment with correlated spins at spatially-
separated locations A and B.

that cause only one or zero particles to be detected, instead of two. We describe noise using a
Werner[17] state. This is composed of a singlet Bell state (Fig. 1),

|Ψ〉S =
1√
2

(|1〉A |−1〉B− |−1〉A |1〉B) (1)

with probability p, and a state with a particle of random spin at each detector, with probability
1− p. In the photonic case, |±1〉A indicates a photon with positive or negative helicity detected
at A, or more generally simply two distinct spin states of any quantum field. The overall Werner
state is then ρW = pρS+(1− p)I4/4. Here I4 indicates an identity operator on the two-particle
subspace of the four-mode Hilbert space. It includes all states with one particle at A, and one at
B, irrespective of their spin. The purity of the Werner state is RW = Tr

[
ρ2W

]
=

(
3p2+1

)
/4.

We account for all loss that occurs prior to the measurement of the “spin” (polarization) of
each particle[23], by defining the overall efficiency as η . Thus at each detector, three outcomes
are possible: +1 (spin “up”); −1, (spin “down”); and 0, (no detection). The detection subspace
corresponds to a qutrit. To determine the density matrix, we derive the full matrix based on
a beam splitter model of loss[22], in which the initial state is represented as ρWρvac. Here
ρvac = |0〉〈0| is the multimode vacuum state for four field modes (a±,vac and b±,vac) that collect
lost photons. Thus, we assume the standard quantum description of losses.
It is useful to adopt the Schwinger representation of the Werner state, for which |1〉 ≡

|1,0〉A/B and |− 1〉A/B ≡ |0,1〉A/B where |i, j〉A means i and j quanta in two distinguishable
field modes at A that have spin labels +1 and −1, and for which a†± are the creation operators
respectively. States at B for modes b± are defined similarly. We call the A and B measurements
Alice’s and Bob’s respectively.
The effect of the beam splitter model is to couple the field and vacuum modes. After loss, the

modes are transformed as a± →√ηa± +
√
1−ηa±,vac and b± →√ηb± +

√
1−ηb±,vac. We

derive ρF , the matrix for the detected system obtained by taking the trace over the lost photon
modes. The 9 basis states are in three groups, categorised as 2, 1, 0, by the number of particles:
u1−4 = |±1〉A|±1〉B; u5,6 = |±1〉A|0〉B, u7,8 = |0〉A|±1〉B; and u9 = |0〉A|0〉B. We find that:

ρF =




η2ρW 0 0
0 (η/2)(1−η)I4 0
0 0 (1−η)2



 . (2)

Whether the decohered system ρF is entangled is readily determined using the PPT
criterion[3, 4], that if a partial transpose of the density matrix has a negative eigenvalue, then
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Fig. 2. Negativity of decohered Bell state to show entanglement sudden death for noise
decoherence at p< 1/3, but continuous suppression of entanglement for loss decoherence
at all η .

the state must be entangled. Calculation of the eigenvalues reveals entanglement for all η > 0
and p> 1/3. A plot of the negativity (magnitude of the smallest negative eigenvalue of the den-
sity matrix) η2(3p− 1)/4 is shown in Fig. 2. This could be experimentally determined using
quantum state tomography.
We emphasize that here we proceed by taking a standard quantum theoretic approach to loss.

Within our quantum treatment, η incorporates the effect of all generation and detection losses.
It is also possible to take a black box approach, and consider a completely unknown cause of
measurement errors[23], which leads to a different efficiency threshold.

3. Projected entanglement measures

We now show that a more practical criterion to confirm entanglement is obtained using opera-
tors which project onto the subspace in which no photons are lost. Experimentally, this amounts
to the procedure of measuring the “qubit” at each detector A and B only where one obtains a
count at each detector. This procedure is exploited in many seminal experiments[24] that infer
the properties of the photonic Bell state. We now formally validate this approach when inferring
entanglement, for the case where photons are lost prior to measurement[23].
We use the Schwinger representation approach to define spin operators in terms of the par-

ticle numbers detected at each location[23]: JAx = (a†+a− +a†−a+)/2, JAy = i(a†−a+ −a†+a−)/2,
JAz = (a†+a+ − a†−a−)/2 . The total observed particle number operator at Alice’s location A is
NA = a†+a+ +a†−a−. At Bob’s location, B, JBx , JBy , JBz and NB are defined in terms of b±. Since
NA,B=0,1 these are also projectors PA,B on the subspace of particles detected at A,B respectively.
Results for JZ at A can be ±1, 0, where 0 is only achieved where there is no photon counted.
We now suppose Alice measures the local projection sAz = JAz PA. She thus defines her spin op-
erators after projection onto the spin-1/2 subspace: sAx = JAx PA = (1/2)[|10〉〈01|+ |01〉〈10|]A,
sAy = JAY PA = (1/2i)[|10〉〈01|−|01〉〈10|]A, sAz = (1/2)[|10〉〈10|−|01〉〈01|]A and s2A = s2X +s2Y +
s2Z = (3/4)NA. Similar operators are defined for Bob.
Alice and Bob can also measure polarisations on a doubly projected subspace, corre-

sponding to coincident counts. Their measurements then become nonlocal, given by the set
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SA|Bθ = JAθ P
APB = sAθP

B and S2A|B = (3/4)PAPB where θ ∈ {x,y,z}. We have already defined
the full 9x9 density matrix ρ . The projected 4x4 one is ρpro j = PAPBρPAPB/Tr[ρPAPB]. This
projected density matrix, as one might expect intuitively, is just the Werner density matrix that
we started with.
We wish to prove that the projected measurements are sufficient to prove entanglement over

the full density matrix. This follows using the fact that local projections or their products cannot
induce entanglement[4]. Hence, a criterion sufficient for entanglement on the projected density
matrix is also sufficient over the complete density matrix. As an example, we consider the
entanglement criterion of Hofmann and Takeuchi[25], and define a sum of spin measurements
for Alice and Bob as sθ = sAθ + sBθ , where θ ∈ {x,y,z}. It is therefore sufficient to measure
∆2sx+∆2sy+∆2sz < 1 over the two-photon subspace to confirm entanglement on the full space.
This is always possible[25] provided p> 1/3.
It is perhaps rather obvious that by losing some particles one can still retain entanglement.

After all, if one has several copies of an entangled state, but some of them are lost, the result-
ing ensemble should still be entangled. However, it might also seem “obvious” that if one has
an ensemble of entangled states and some of them are replaced by mixed states, the ensemble
should still retain some entanglement. In reality this is actually false. The interest of the ap-
parently “obvious” (and true) result about entanglement with loss must be contrasted with the
falsity of the also apparently “obvious” result about noise.
Our conclusion is therefore that as far as entanglement is concerned, the effect of particle

losses on the Bell state can be ignored, if one simply makes measurements conditioned on ob-
serving two-particle coincidences. This is, of course, a key difference between the two kinds of
decoherence: the effect of loss can be filtered out by post-selecting the subset of measurements
in which all expected detections occur, whereas this cannot be done for noise. In other words,
loss decoherence has no effect on entanglement — there is no ESD here — while noise deco-
herence has a stronger effect, causing a decoherence threshold which is equivalent to the ESD
phenomenon. In both cases, the total density matrix prior to measurement is in a mixed state
caused by the decoherence.

4. Spin EPR paradox

Next, we turn to the EPR paradox. This is much more challenging experimentally. The paradox
shows that local realism (LR) is inconsistent with the completeness of quantum mechanics,
which is a stronger result than entanglement. As a first requirement, since EPR’s no “action-
at-a-distance” is crucial to the local realism part of the EPR argument, one must have causal
separation between Alice’s and Bob’s measurements. Thus, for EPR, we must rule out the non-
local procedure of projections onto the two-photon subspace. Alice’s and Bob’s measurements
must be local. Second, the measurements at Alice’s location must allow a local state to be
inferred at Bob’s location — assuming LR. If this inferred state has a lower uncertainty than
allowed by quantum mechanics, the EPR paradox is obtained. Thus LR is false (local prediction
does not imply a local element of reality) or quantum mechanics is incomplete (it fails to fully
describe the inferred state, since this violates the uncertainty principle). This logic is central to
the EPR argument applied to real experiments.
It is important here to recognise the difference between the EPR and Bell arguments. Follow-

ing Einstein, we explicitly assume that quantum theory correctly describes our measurements.
The EPR logic does not require any alternative theory to quantum theory. It simply deals with
the question of whether the completeness of quantum mechanics is compatible with local real-
ism. Therefore, there is no need here to consider Bell’s investigation into local hidden variable
theories, which may have an arbitrary treatment of loss. This means that we can use a standard
quantum treatment of loss.
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Our route to a signature of an unambiguous EPR paradox[26, 27] is via an inference argument
together with the known quantum uncertainty principle ∆2Jx+∆2Jy+∆2Jz≥ 〈N〉/2 for spins—
the same uncertainty principle used in the derivation of the entanglement criterion of [25, 28],
given as

∆2Jx+∆2Jy+∆2Jz < 〈NA+NB〉/2, (3)

where Jθ = JAθ + JBθ . Our EPR criterion simply requires that the inferred variance of Bob’s
measurements must be less than that for any possible quantum state; that is:

∆2in f JBx +∆2in f JBy +∆2in f JBz < 〈NB〉/2. (4)

Measurement schemes for all quantities in (4) have been demonstrated in recent polarisation-
squeezing experiments[29, 30]. Here ∆2in f JBx = ∑JAx P(JAx )∆2(JBx |JAx ) is the average, over JAx , of
the conditional variances ∆2(JBx |JAx ), for a measurement JBx given an outcome JAx . This inferred
uncertainty is the average error associated with the inferred result for a remote measurement
JBx , given measurement of JAx . To prove the EPR criterion (4), one considers the conditional
distributions as predictions for B given A[26, 27]. If LR holds, the predetermined prediction for
JBx means there is a corresponding localised state ρB at B. This is because if the systems are
causally separated, according to LR, the measurement at B does not induce immediate change
to A. EPR called such predetermined states “elements of reality”.
In the case of Bohm’s EPR paradox, the assumption of LR means that elements of reality

exist for each of the spins JBx , JBy , JBz . The variances associated with the prediction for each of
them are respectively, ∆2in f JBx , ∆2in f JBy , ∆2in f JBz . Where we satisfy (4), EPR’s elements of reality
defy the quantum uncertainty relation for B. That is, it is impossible to represent Einstein’s
proposed element of reality as a quantum state ρB. In this way the EPR paradox is able to be
experimentally demonstrated. This is an important conceptual boundary, which demonstrates
the inadequacy of the classical concept of local realism in dealing with quantum states.
When loss is included, we find that it increases the uncertainties associated with the inference

of measurements at Bob’s location. As before, we take the Werner state and calculate the EPR
inequality with loss included. The RHS of (4) is η/2 while ∆2in f JBx = ∆2in f JBy = ∆2in f JBz = η(1−
η2p2)/4. The EPR criterion is then satisfied for η p > 1/

√
3. This implies that, unlike the

entanglement case, both loss and noise have a similar effect on the EPR paradox. The reason is
simply that the EPR paradox is related to causality. Nonlocal projections cannot be used, as in
the entanglement case, to obtain a smaller ensemble for conditional measurement. This is also
the same reason why one cannot use the term EPR paradox or Bell inequality unless there is a
clear causal separation between the measurement events.
Although the required efficiency is greater than in any reported Bell state measurement to

date, it is within reach of current photo-detectors. It would be an interesting challenge to demon-
strate the EPR paradox for spatially separated, correlated particles. This would resolve Furry’s
question[31] about the possibility of entanglement decay for separated massive particles, which
was an early proposal to resolve the EPR paradox.

5. Macroscopic EPR entanglement

Finally, we consider entanglement and EPR for macroscopic states with more than one particle
per mode. This implies that we now consider only bosonic fields, like photons or ultra-cold
BEC experiments. These correlated states would give a much more powerful test of quan-
tum measurement theory, testing features of quantum reality in domains that become meso- or
macroscopic. In this domain, a number of alternatives to quantum mechanics have been sug-
gested, where quantum superpositions are prevented from forming via novel mechanisms such
as couplings to gravitational fields[32]. If gravitational effects are involved, it seems clear that
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one must test the relevant quantum predictions for massive particles, in order to allow for a
strong enough gravitational coupling to occur.
To test for quantum effects in such macroscopic cases, we first consider the way in which the

relevant states would be generated in practice. We consider a macroscopic version of the Bell
state (1), using the Schwinger representation

|ψN〉 =
1

N!
√
N+1

(a†+b
†
−−a†−b

†
+)N |0〉. (5)

We can generate the states of Eq. (5) using two parametric amplifiers[29, 30] as modeled by
the interaction Hamiltonian

H = ih̄κ(a†+b
†
−−a†−b

†
+)− ih̄κ(a+b−−a−b+). (6)

With an initial vacuum state, the solution after a time t is a superposition of the |ψN〉. In the
regime of large 〈NB〉, higher photodiode detection efficiencies (η ≈ 0.9) can be achieved, al-
though a precise photon count, which would enable a test of Bell’s inequality[33, 34, 35], is
difficult. The solutions are readily obtained to give

a± = a±(0)cosh(r)±b†∓(0)sinh(r) (7)
b± = b±(0)cosh(r)∓a†∓(0)sinh(r), (8)

where a±(0) represent vacuum initial states and r = |κ|t. The effect of loss is analysed using
a standard beam splitter model[22] which adds vacuum terms so that final outputs after loss
become aL± =

√ηa± +
√
1−ηa±,0 and bL± =

√ηb± +
√
1−ηb±,0 where the a±,0 and b±,0

represent independent vacuum inputs. With this we get

〈(JAZ )2〉 = (1/2)η sinh2(r)(1+η sinh2(r)) (9)
〈JAZ JBZ 〉 = −(1/2)η2 cosh2(r)sinh2(r), (10)

which gives a final result for the spin uncertainties of:

∆2Jx = ∆2Jy = ∆2Jz = η(1−η)sinh2(r) , (11)

and 〈N〉= 4η sinh2(r). For all N, efficiencies η > 1/3 are enough to demonstrate entanglement.
A similar result is obtained for the spin EPR correlations. Here the minimum efficiency

required to satisfy (4) approaches η = 2/3 for infinite 〈NB〉. We calculate the conditional vari-
ances for this Gaussian system using a linear regression approach[26, 27], where the estimate
for the result of the remote measurement JBx is simply JBθ ,est = gJAθ , so that the average infer-
ence variance is ∆2in f JBθ = 〈(JBθ − gJAθ )2〉. We calculate the linear inference variance for (6) by
selecting g= −〈JBθ JAθ 〉/〈JAθ JAθ 〉 to minimise ∆2in f JBθ :

∆2in f JBθ = 〈(JBθ )2〉−〈JBθ JAθ 〉2/〈(JAθ )2〉

=
ηsinh2r(1−η2+2η(1−η)sinh2r)

2(1+ηsinh2r) (12)

and 〈NB〉= 2ηsinh2r. Figure 3 plots the threshold efficiency η for satisfaction of (4), to indicate
a test of macroscopic EPR for large 〈NB〉 and η > 2/3.
Note that the calculations in this section refer to loss decoherence. A calculation including a

model of the effect of noise in the entanglement of this many-particle system would of course
be important before experimental realisation of this proposal. As for the two-qubit case, we
expect that some finite amount of noise will lead to the elimination of entanglement as well as
the EPR paradox, with the precise value depending on the type of noise affecting the system.
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Fig. 3. (a) Threshold detection efficiency ηmin required (by (6)) to confirm entanglement
and the spin EPR paradox via (3) and (4), for a given mean photon number 〈NB〉.

6. Conclusion

We have shown that it is possible to demonstrate two qubit entanglement for any value of loss,
although ESD occurs when there is noise decoherence. Demonstrating Bohm’s two qubit spin
EPR paradox[15] is more difficult. With our criterion, this is only possible above a critical
detection efficiency η > 1/

√
3. This is still more accessible than a loophole-free demonstration

of Bell nonlocality, which has an even higher efficiency threshold.
The significance of progressively testing for stronger forms of nonlocality, from entangle-

ment to the EPR paradox through to Bell’s theorem, has been outlined recently by Wiseman et
al.[36], who report a cut-off of the EPR paradox for Werner states, at p≤ 0.5.
We then progress to examine the resilience of the nonlocality of macroscopic systems to

decoherence. We report that the entanglement and Bohm’s spin EPR paradox are preserved
for η > 1/3 and η > 2/3 respectively, even for higher qubit systems with arbitrarily large N.
This is a surprising result that contradicts the popular view that sensitivity of entanglement to
decoherence increases with the “largeness” of bodies entangled[7, 22].
Our prediction that entanglement between macroscopic (arbitrary 〈NB〉) systems is preserved

up to a large and fixed loss appears to counter previous results regarding macroscopic decoher-
ence [8, 22, 9, 10]. Yet, the result is consistent with recent predictions for decoherence based
on mixing with noisy states[37], and reports of experimental measurement of entanglement be-
tween large, lossy systems[38, 29, 30, 39]. The prediction can be tested with either photonic
or massive atomic systems[32, 40], leading both to new understandings and tests of quantum
mechanics, and the possibility of novel quantum technologies.
In current optical experiments the best quantum efficiency achievable is about 75%, which is

typically a combination of losses in the apparatus (85%)[41], mode matching (95%) and effi-
ciency of the detectors (95%)[42]. Further refinements, like those employed in the best optical
squeezing experiments [43, 44], will bring the total efficiency closer to 90%. This is well above
our calculated benchmark efficiency of 58% for an EPR test, provided other technical noise
sources can be suppressed sufficiently well. In summary, an unambiguous experimental test of
this EPR criterion is not impossible.
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