1,994 research outputs found

    Regional Industry Analysis: An Approach for Economies Large and Smaller

    Get PDF
    Interest in cluster analysis for economic development in regions has been significant over the years. Knowing the strengths and weaknesses of a community’s industry clusters or economic agglomerations can provide regions with resilience to economic changes. Large and smaller economies that are able to identify their industry clusters and know their competitive strengths and weaknesses may be more adaptable and able to thwart the negative effects of economic change. One example of the value of knowing about the strengths and weaknesses of an economy and the potential to shift to new areas of production and service in a local economy is evidenced in Walla Walla, Washington. Smaller communities such as Walla Walla (population estimate 31,957 (U.S. Census)) that have a competitive advantage in wheat production but have found the need to transform their economies because global competition has made their wheat crop production less competitive. Walla Walla packaged some of its natural amenities and strengths in crop production, made use of the education infrastructure at its community college, and created a new industry stronghold of wine production and tourism and increasing restaurant and hotel attractions (Public Broadcasting Service, 2012). Walla Wall capitalized on their completive advantage in crop production, moving from wheat to grapes. This was necessary to stay competitive, but would have been unlikely had they not built on its existing competitive advantage in agriculture and made use of its community college to disseminate knowledge about wine production

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system

    Get PDF
    We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor, and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.Comment: 10 pages, 5 figures, as accepted to Chaos on 2017/06/2

    Investigation of Wing Characteristics at a Mach Number of 1.53 II : Swept Wings of Taper Ratio 0.5

    Get PDF
    Measured values of lift, drag, and pitching moment at M(sub o) = 1.53 are presented for seven wings varying in sweep angle from 60 degrees sweepforward to 60 degrees sweepback. All wings had a cambered, double-wedge section 5-percent thick and a common taper ratio of 0.5. The experimental results are compared with the predictions of the linear theory

    Interactions of inert confiners with explosives

    Get PDF
    The deformation of an inert confiner by a steady detonation wave in an adjacent explosive is investigated for cases where the confiner is suciently strong (or the explosive suciently weak) such that the overall change in the sound speed of the inert is small. A coupling condition which relates the pressure to the deflection angle along the explosive-inert interface is determined. This includes its dependence on the thickness of the inert, for cases where the initial sound speed of the inert is less than or greater than the detonation speed in the explosive (supersonic and subsonic inert ows, respectively). The deformation of the inert is then solved by prescribing the pressure along the interface. In the supersonic case, the detonation drives a shock into the inert, subsequent to which the ow in the inert consists of alternating regions of compression and tension. In this case reverberations or `ringing' occurs along both the deflected interface and outer edge of the inert. For the subsonic case, the flow in the interior of the inert is smooth and shockless. The detonation in the explosive initially defl ects the smooth interface towards the explosive. For sufficiently thick inerts in such cases, it appears that the deflection of the confiner would either drive the detonation speed in the explosive up to the sound speed of the inert or drive a precursor wave ahead of the detonation in the explosive. Transonic cases, where the inert sound speed is close to the detonation speed, are also considered. It is shown that the confinement affect of the inert on the detonation is enhanced as sonic conditions are approached from either side

    A self-interacting partially directed walk subject to a force

    Full text link
    We consider a directed walk model of a homopolymer (in two dimensions) which is self-interacting and can undergo a collapse transition, subject to an applied tensile force. We review and interpret all the results already in the literature concerning the case where this force is in the preferred direction of the walk. We consider the force extension curves at different temperatures as well as the critical-force temperature curve. We demonstrate that this model can be analysed rigorously for all key quantities of interest even when there may not be explicit expressions for these quantities available. We show which of the techniques available can be extended to the full model, where the force has components in the preferred direction and the direction perpendicular to this. Whilst the solution of the generating function is available, its analysis is far more complicated and not all the rigorous techniques are available. However, many results can be extracted including the location of the critical point which gives the general critical-force temperature curve. Lastly, we generalise the model to a three-dimensional analogue and show that several key properties can be analysed if the force is restricted to the plane of preferred directions.Comment: 35 pages, 14 figure

    Chromosome 5p Region SNPs Are Associated with Risk of NSCLC among Women

    Get PDF
    In a population-based case-control study, we explored the associations between 42 polymorphisms in seven genes in this region and non-small cell lung cancer (NSCLC) risk among Caucasian (364 cases; 380 controls) and African American (95 cases; 103 controls) women. Two TERT region SNPs, rs2075786 and rs2853677, conferred an increased risk of developing NSCLC, especially among African American women, and TERT-rs2735940 was associated with a decreased risk of lung cancer among African Americans. Five of the 20 GHR polymorphisms and SEPP1-rs6413428 were associated with a marginally increased risk of NSCLC among Caucasians. Random forest analysis reinforced the importance of GHR among Caucasians and identified AMACR, TERT, and GHR among African Americans, which were also significant using gene-based risk scores. Smoking-SNP interactions were explored, and haplotypes in TERT and GHR associated with NSCLC risk were identified. The roles of TERT, GHR, AMACR and SEPP1 genes in lung carcinogenesis warrant further exploration

    The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    Get PDF
    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock
    corecore