752 research outputs found

    Organochlorine Pesticides in Chlorioallantoic Membranes of Morelet\u27s Crocodile Eggs from Belize

    Get PDF
    Recent studies examined the utility of the chorioallantoic membrane (CAM) as a nonlethal, noninvasive indicator of environmental contaminant exposure in oviparous wildlife. The CAM is a highly vascularized extraembryonic membrane that functions as a site for respiration, nutrient transport, and waste storage during embryonic development. After hatching, the CAM is usually discarded with the eggshell and can be used for chemical residue analysis. Chorioallantoic membranes have been used successfully to examine contaminant exposure and predict chemical concentrations in multiple species of birds and reptiles. In this study, we examined organochlorine (OC) pesticide concentrations in CAMs from eggs of Morelet\u27s crocodiles (Crocodylus moreletii) from northern Belize. Multiple OCs were detected in crocodile CAMs, including aldrin, dieldrin, endrin, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene (DDE), heptachlor, lindane, and methoxychlor. Number and concentrations of OC compounds in CAMs were variable. The most prevalent contaminant detected was DDE, which occurred in 69% of CAMs, with concentrations ranging from 0.3 parts per billion (ppb) to 17.0 ppb. The OC burdens in crocodile CAMs confirm contamination of eggs and suggest exposure in embryos and maternal females. These results further support the use of CAMs as qualitative indicators of OC exposure in oviparous wildlife. The efficacy of this sampling technique in the field will depend on the logistics and cost associated with CAM collection and the specific life history traits of the wildlife species

    The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo

    Get PDF
    Abstract The eukaryotic 43S pre-initiation complex bearing tRNA i Met scans the mRNA leader for an AUG start codon in favorable context. Structural analyses revealed that the β-hairpin of 40S protein Rps5/uS7 protrudes into the 40S mRNA exit-channel, contacting the eIF2•GTP•Met-tRNA i ternary complex (TC) and mRNA context nucleotides; but its importance in AUG selection was unknown. We identified substitutions in β-strand-1 and C-terminal residues of yeast Rps5 that reduced bulk initiation, conferred 'leaky-scanning' of AUGs; and lowered initiation fidelity by exacerbating the effect of poor context of the eIF1 AUG codon to reduce eIF1 abundance. Consistently, the β-strand-1 substitution greatly destabilized the 'P IN ' conformation of TC binding to reconstituted 43S·mRNA complexes in vitro. Other substitutions in β-hairpin loop residues increased initiation fidelity and destabilized P IN at UUG, but not AUG start codons. We conclude that the Rps5 β-hairpin is as crucial as soluble initiation factors for efficient and accurate start codon recognition

    Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus

    Get PDF
    Examinations of both population genetic structure and the processes that lead to such structure in crocodilians have been initiated in several species in response to a call by the IUCN Crocodile Specialist Group. A recent study used microsatellite markers to characterize Morelet\u27s crocodile (Crocodylus moreletii) populations in north-central Belize and presented evidence for isolation by distance. To further investigate this hypothesis, we sequenced a portion of the mitochondrial control region for representative animals after including samples from additional locales in Belize, Guatemala and Mexico. While there is limited evidence of subdivision involving other locales, we found that most of the differentiation among populations of C. moreletii can be attributed to animals collected from a single locale in Belize, Banana Bank Lagoon. Furthermore, mitochondrial DNA sequence analysis showed that animals from this and certain other locales display a haplotype characteristic of the American crocodile, C. acutus, rather than C. moreletii. We interpret this as evidence of hybridization between the two species and comment on how these new data have influenced our interpretation of previous findings. We also find very low levels of nucleotide diversity in C. moreletii haplotypes and provide evidence for a low rate of substitution in the crocodilian mitochondrial control region. Finally, the conservation implications of these findings are discussed

    Evidence That Hepatitis C Virus Resistance to Interferon Is Mediated through Repression of the PKR Protein Kinase by the Nonstructural 5A Protein

    Get PDF
    AbstractHepatitis C virus (HCV) is the major cause of non-A non-B hepatitis and a leading cause of liver dysfunction worldwide. While the current therapy for chronic HCV infection is parenteral administration of type 1 interferon (IFN), only a fraction of HCV-infected individuals completely respond to treatment. Previous studies have correlated the IFN sensitivity of strain HCV-1b with mutations within a discrete region of the viral nonstructural 5A protein (NS5A), termed the interferon sensitivity determining region (ISDR), suggesting that NS5A may contribute to the IFN-resistant phenotype of HCV. To determine the importance of HCV NS5A and the NS5A ISDR in mediating HCV IFN resistance, we tested whether the NS5A protein could regulate the IFN-induced protein kinase, PKR, a mediator of IFN-induced antiviral resistance and a target of viral and cellular inhibitors. Using multiple approaches, including biochemical, transfection, and yeast genetics analyses, we can now report that NS5A represses PKR through a direct interaction with the protein kinase catalytic domain and that both PKR repression and interaction requires the ISDR. Thus, inactivation of PKR may be one mechanism by which HCV avoids the antiviral effects of IFN. Finally, the inhibition of the PKR protein kinase by NS5A is the first described function for this HCV protein

    Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Get PDF
    BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed

    An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA

    Get PDF
    Genome-wide analysis of ribosome locations in mRNAs of Saccharomyces cerevisiae has revealed the translation of upstream open reading frames that initiate with near-cognate start codons in many transcripts. Two such non-translation initiation codon (AUG)-initiated upstream open reading frames (uORFs) (nAuORFs 1 and 2) occur in GCN4 mRNA upstream of the four AUG-initiated uORFs (uORFs 1–4) that regulate GCN4 translation. We verified that nAuORF2 is translated in vivo by demonstrating β-galactosidase production from lacZ coding sequences fused to nAuORF2, in a manner abolished by replacing its non-AUG initiation codon (AUA) start codon with the non-cognate triplet AAA, whereas translation of nAuORF1 was not detected. Importantly, replacing the near-cognate start codons of both nAuORFs with non-cognate triplets had little or no effect on the repression of GCN4 translation in non-starved cells, nor on its derepression in response to histidine limitation, nutritional shift-down or treatment with rapamycin, hydrogen peroxide or methyl methanesulfonate. Additionally, we found no evidence that initiation from the AUA codon of nAuORF2 is substantially elevated, or dependent on Gcn2, the sole eIF2α kinase of yeast, in histidine-deprived cells. Thus, although nAuORF2 is translated in vivo, it appears that this event is not stimulated by eIF2α phosphorylation nor significantly influences GCN4 translational induction under various starvation or stress conditions

    Genetics and the Archaeology of Ancient Israel

    Get PDF
    This paper is a call for DNA testing on ancient skeletal materials from the southern Levant to begin to database genetic information of the inhabitants of this crossroads region. Archaeologists and biblical historians view the earliest presence in the region of a group that called itself Israel in the Iron I period, traditionally dated to ca. 1200-1000 BCE. These were in villages in the varied hill countries of the region, contemporary with urban settlements in the coastal plains, inland valleys, and central Hill Country attributed to varied indigenous groups collectively called Canaanite. The remnants of Egyptian imperial presence in the region lasted until around 1150 BCE, postdating the arrival of an immigrant group from the Aegean called the Philistines ca. 1175 BCE. The period that follows the Iron I in the southern Levant is marked by the development of territorial states throughout the region, ca. 1000-800 BCE. These patrimonial kingdoms, including the United Kingdom of Israel and the divided kingdoms of northern Israel and Judah, coalesced varied peoples under central leadership and newly founded administrative and religious bureaucracies. Ancient DNA testing will give us a further refined understanding of the individuals who peopled the region of the southern Levant throughout its varied archaeological and historic periods, and put forward scientific data that will support, refute, or nuance our socio-historic reconstruction of ancient group identities. These social identities may or may not map onto genetic data, and without sampling of ancient DNA we may never know. A database of ancient DNA will also allow for comparisons with modern DNA samples collected throughout the greater region and the Mediterranean littoral, giving a more robust understanding of the long historical trajectories of regional human genetics and the genetics of varied ancestral groups of today’s Jewish populations and other cultural groups in the modern Middle East and Mediterranean
    corecore