274 research outputs found

    A comparative study of state-of-the-art linked data visualization tools

    Get PDF
    Data visualization tools are of great importance for the exploration and the analysis of Linked Data (LD) datasets. Such tools allow users to get an overview, understand content, and discover interesting insights of a dataset. Visualization approaches vary according to the domain, the type of data, the task that the user is trying to perform, as well as the skills of the user. Thus, the study of the capabilities that each approach offers is crucial in supporting users to select the proper tool/technique based on their need. In this paper we present a comparative study of the state-of-the-art LD visualization tools over a list of fundamental use cases. First, we define 16 use cases that are representative in the setting of LD visual exploration, examining several tool's aspects; e.g., functionality capabilities, feature richness. Then, we evaluate these use cases over 10 LD visualization tools, examining: (1) if the tools have the required functionality for the tasks; and (2) if they allow the successful completion of the tasks over the DBpedia dataset. Finally, we discuss the insights derived from the evaluation, and we point out possible future directions

    Scaffold Optimisation of Tetravalent Antagonists of the Mannose Binding Lectin

    Get PDF
    Antagonists of mannose binding lectin (MBL) have shown a protective role against brain reperfusion damage after acute ischemic stroke. Here we describe the design and streamlined synthesis of glycomimetic MBL antagonists based on a new tetravalent dendron scaffold. The dendron was developed by optimisation of a known polyester structure previously demonstrated to be very efficient for ligand presentation to MBL. Replacement of a labile succinyl ester bond with a more robust amide functionality, use of a longer and more hydrophilic linker, fast modular synthesis and orthogonal functionalisation at the focal point are the main features of the new scaffold. The glycoconjugate constructs become stable to silica gel chromatography and to water solutions at physiological pH, while preserving water solubility and activity in an SPR assay against the murine MBL-C isoform. Higher-order constructs were easily assembled, as demonstrated by the synthesis of a 16-valent dendrimer, which leads to two orders of magnitude increase in activity over the tetravalent version against MBL-C

    Diastereo- and Enantioselective Pd(II)-Catalyzed Additions of 2-Alkylazaarenes to N-Boc Imines and Nitroalkenes

    Get PDF
    A chiral Pd(II)–bis(oxazoline) complex was found to be highly effective in promoting the first direct diastereo- and enantioselective addition of alkylazaarenes to N-Boc aldimines and nitroalkenes under mild conditions. Deprotection of Boc-protected products proceeded readily to provide amines in high yields

    Transition metal complexes of a versatile polyalkoxy oxazolidine-based ligand derived from in situ cyclization

    Get PDF
    YesOne-pot reaction between 8-hydroxyquinoline-2-carboxaldehyde (HQC) and tris(hydroxymethyl)aminomethane (TRIS) followed by in situ cyclization yielded an oxazolidine based ligand which produced four mononuclear complexes of MnII(1), CoII(2), NiII(3), ZnII(4), a tetranuclear iron (FeIII4) complex (5) and a trinuclear cobalt (CoIICoIII2) complex (6). Magnetic studies show dominant antiferromagnetic interaction in tetranuclear iron (FeIII4) complex 5 and presence of the slow relaxation of magnetisation in 6. The compounds were also studied for their antibacterial properties. The oxazolidine ligand (H3L2) of this study showed good antimicrobial activity not only against Gram-positive bacteria but against Gram-negative bacteria too. The antimicrobial efficacy of the metal complexes (1–6) is also reported.The full-text of this article will be released for public view at the end of the publisher's embargo period on 11 Apr 2019

    Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium

    Get PDF
    On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.National Science Foundation (U.S.) (DMR-1507806
    • 

    corecore