344 research outputs found

    Pseudo spin-orbit coupling of Dirac particles in graphene spintronics

    Full text link
    We study the pseudo spin-orbital (SO) effects experienced by massive Dirac particles in graphene, which can potentially be of a larger magnitude compared to the conventional Rashba SO effects experienced by particles in a 2DEG semiconductor heterostructure. In order to generate a uniform vertical pseudo SO field, we propose an artificial atomic structure, consisting of a graphene ring and a charged nanodot at the center which produces a large radial electric field. In this structure, a large pseudo SO coupling strength can be achieved by accelerating the Dirac particles around the ring, due to the small energy gap in graphene and the large radial electric field emanating from the charged nanodot. We discuss the theoretical possibility of harnessing the pseudo SO effects in mesoscopic applications, e.g. pseudo spin relaxation and switching.Comment: 12 pages, 1 figur

    Embeddings from the point of view of immersion theory: Part II

    Full text link
    Let M and N be smooth manifolds. For an open V of M let emb(V,N) be the space of embeddings from V to N. By results of Goodwillie and Goodwillie-Klein, the cofunctor V |--> emb(V,N) is analytic if dim(N)-dim(M) > 2. We deduce that its Taylor series converges to it. For details about the Taylor series, see Part I.Comment: 16 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper4.abs.htm

    Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

    Get PDF
    The 5g4f5g-4f transitions in pionic nitrogen and muonic oxygen were measured simultaneously by using a gaseous nitrogen-oxygen mixture at 1.4\,bar. Due to the precise knowledge of the muon mass the muonic line provides the energy calibration for the pionic transition. A value of (139.57077\,±\pm\,0.00018)\,MeV/c2^{2} (±\pm\,1.3ppm) is derived for the mass of the negatively charged pion, which is 4.2ppm larger than the present world average

    A Low-Mass Pre-Main-Sequence Eclipsing Binary in Lower Centaurus Crux Discovered with TESS

    Full text link
    We report the discovery of 2M1222-57 as a low-mass, pre-main-sequence (PMS) eclipsing binary (EB) in the Lower Centaurus Crux (LCC) association for which, using Gaia parallaxes and proper motions with a neural-net age estimator, we determine an age of 16.2±\pm2.2 Myr. The broadband spectral energy distribution (SED) shows clear excess at ~10 um indicative of a circumbinary disk, and new speckle-imaging observations reveal a faint, tertiary companion separated by ~100 AU. H-alpha emission is modulated on the orbital period, consistent with theoretical models of orbitally pulsed accretion streams reaching from the inner disk edge to the central stars. From a joint analysis of spectroscopically determined radial velocities and TESS light curves, together with additional tight constraints provided by the SED and the Gaia parallax, we measure masses for the eclipsing stars of 0.74 Msun and 0.67 Msun; radii of 0.98 Rsun and 0.94 Rsun; and effective temperatures of 3750 K and 3645 K. The masses and radii of both stars are measured to an accuracy of ~1%. The measured radii are inflated, and the temperatures suppressed, relative to predictions of standard PMS evolutionary models at the age of LCC; also, the Li abundances are ~2 dex less depleted than predicted by those models. However, models that account for the global and internal effects of surface magnetic fields are able to simultaneously reproduce the measured radii, temperatures, and Li abundances at an age of 17.0±\pm0.5 Myr. Altogether, the 2M1222-57 system presents very strong evidence that magnetic activity in young stars alters both their global properties and the physics of their interiors.Comment: 23 pages, 19 figures, accepted by Ap

    Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination

    Get PDF
    Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.Comment: 34 pages, 24 figures, 14 table

    Subcutaneous Tissue: To Suture or Not to Suture at Cesarean Section

    Get PDF
    Objective: The null hypothesis for this investigation was that there was no difference in the frequency of wound disruption between women who had their subcutaneous tissues approximated with suture and those who did not during cesarean section

    What Future for LEADER as a Catalyst of Social Innovation?

    Get PDF
    The LEADER Approach was initially designed to promote innovation in European rural areas by sustaining a bottom-up approach to local development. Nowadays the LEADER Approach includes elements that are generally considered to support social innovation. Classical features of the LEADER Approach \u2013 for example, area-based development strategies and cooperation and networking \u2013 are considered catalysts of social innovation as well. By drawing on key elements which support social innovation, the chapter discusses the future role of the LEADER Approach and Local Action Groups, and debates the challenges and potentials of the new rural development policy within emerging social, environmental and economic needs

    Muonic hydrogen cascade time and lifetime of the short-lived 2S2S state

    Get PDF
    Metastable 2S{2S} muonic-hydrogen atoms undergo collisional 2S{2S}-quenching, with rates which depend strongly on whether the μp\mu p kinetic energy is above or below the 2S2P{2S}\to {2P} energy threshold. Above threshold, collisional 2S2P{2S} \to {2P} excitation followed by fast radiative 2P1S{2P} \to {1S} deexcitation is allowed. The corresponding short-lived μp(2S)\mu p ({2S}) component was measured at 0.6 hPa H2\mathrm{H}_2 room temperature gas pressure, with lifetime τ2Sshort=16529+38\tau_{2S}^\mathrm{short} = 165 ^{+38}_{-29} ns (i.e., λ2Squench=7.91.6+1.8×1012s1\lambda_{2S}^\mathrm{quench} = 7.9 ^{+1.8}_{-1.6} \times 10^{12} \mathrm{s}^{-1} at liquid-hydrogen density) and population ϵ2Sshort=1.700.56+0.80\epsilon_{2S}^\mathrm{short} = 1.70^{+0.80}_{-0.56} % (per μp\mu p atom). In addition, a value of the μp\mu p cascade time, Tcasμp=(37±5)T_\mathrm{cas}^{\mu p} = (37\pm5) ns, was found.Comment: 4 pages, 3 figure
    corecore