746 research outputs found
Tissue fusion over non-adhering surfaces
Tissue fusion eliminates physical voids in a tissue to form a continuous
structure and is central to many processes in development and repair. Fusion
events in vivo, particularly in embryonic development, often involve the
purse-string contraction of a pluricellular actomyosin cable at the free edge.
However in vitro, adhesion of the cells to their substrate favors a closure
mechanism mediated by lamellipodial protrusions, which has prevented a
systematic study of the purse-string mechanism. Here, we show that monolayers
can cover well-controlled mesoscopic non-adherent areas much larger than a cell
size by purse-string closure and that active epithelial fluctuations are
required for this process. We have formulated a simple stochastic model that
includes purse-string contractility, tissue fluctuations and effective friction
to qualitatively and quantitatively account for the dynamics of closure. Our
data suggest that, in vivo, tissue fusion adapts to the local environment by
coordinating lamellipodial protrusions and purse-string contractions
An Inverse Method for Policy-Iteration Based Algorithms
We present an extension of two policy-iteration based algorithms on weighted
graphs (viz., Markov Decision Problems and Max-Plus Algebras). This extension
allows us to solve the following inverse problem: considering the weights of
the graph to be unknown constants or parameters, we suppose that a reference
instantiation of those weights is given, and we aim at computing a constraint
on the parameters under which an optimal policy for the reference instantiation
is still optimal. The original algorithm is thus guaranteed to behave well
around the reference instantiation, which provides us with some criteria of
robustness. We present an application of both methods to simple examples. A
prototype implementation has been done
OR2-002 – The risk of FMF in MEFV heterozygotes
International audienc
The level set method for the two-sided eigenproblem
We consider the max-plus analogue of the eigenproblem for matrix pencils
Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible
values of lambda), which is a finite union of intervals, can be computed in
pseudo-polynomial number of operations, by a (pseudo-polynomial) number of
calls to an oracle that computes the value of a mean payoff game. The proof
relies on the introduction of a spectral function, which we interpret in terms
of the least Chebyshev distance between Ax and lambda Bx. The spectrum is
obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we
explain relation to mean-payoff games and discrete event systems, and show
that the reconstruction of spectrum is pseudopolynomia
ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis
Acknowledgments: The authors would like to thank Dominique Gien, Sirandou Tounkara, and Eliane Véra at Centre National de Référence pour les Groupes Sanguins for the management of blood samples. Funding: The work was supported by Institut National de la Santé et de la Recherche Médicale (Inserm), Institut National de la Transfusion Sanguine (INTS), the University of Paris, and grants from Laboratory of Excellence (Labex) GR-Ex, reference No. ANR-11-LABX-0051. The Labex GR-Ex is funded by the IdEx program “Investissements d’avenir” of the French National Research Agency, reference No. ANR-18-IDEX-0001. R.B. was funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 675115-RELEVANCE-H2020-MSCA-ITN-2015. M.B. was funded by Ministère de l’Enseignement Supérieur et de la Recherche at the BioSPC Doctoral School. R.B. and M.B. also received financial support from Société Française d’Hématologie (SFH) and Club du Globule Rouge et du Fer (CGRF).Peer reviewedPublisher PD
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
Franchise Business Development Model: Theoretical Considerations
Franchising is not a popular business development form in Lithuania. Only 0.02% of all Lithuanian companies use franchising for business development, while in most of the developed countries franchise is recognized as a convenient business expansion form. So, what factors determine such differences in the use of franchising? Analysis of related literature showed, that mainly researchers analyse some aspects of franchising, however there is no systematized analysis which covers all the main franchise development elements. Therefore, the aim of this article is to systematize franchise business development phases, main elements and factors, influencing this process and to propose a theoretical franchise system development model. Thus, theoretical considerations about the main phases and elements of franchise system development as well as advantages and disadvantages of the system are analysed in the article. These theoretical considerations are generalized in theoretical franchise system development model, which shows, that development of franchise business consists of particular steps, starting from favourable conditions for the system to emerge; intention and ability of franchisor to form franchise based on his business; the establishment and initial development of franchise system; and its further functioning. The article does not test the model and even does not discuss the operationalization of it. Operationalization of the model as well as empirical evidence is presented by the authors in the forthcoming articles
Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study.
BACKGROUND: The ongoing Ebola outbreak led to accelerated efforts to test vaccine candidates. On the basis of a request by WHO, we aimed to assess the safety and immunogenicity of the monovalent, recombinant, chimpanzee adenovirus type-3 vector-based Ebola Zaire vaccine (ChAd3-EBO-Z).
METHODS: We did this randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a trial at the Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Participants (aged 18-65 years) were randomly assigned (2:2:1), via two computer-generated randomisation lists for individuals potentially deployed in endemic areas and those not deployed, to receive a single intramuscular dose of high-dose vaccine (5 × 10(10) viral particles), low-dose vaccine (2·5 × 10(10) viral particles), or placebo. Deployed participants were allocated to only the vaccine groups. Group allocation was concealed from non-deployed participants, investigators, and outcome assessors. The safety evaluation was not masked for potentially deployed participants, who were therefore not included in the safety analysis for comparison between the vaccine doses and placebo, but were pooled with the non-deployed group to compare immunogenicity. The main objectives were safety and immunogenicity of ChAd3-EBO-Z. We did analysis by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02289027.
FINDINGS: Between Oct 24, 2014, and June 22, 2015, we randomly assigned 120 participants, of whom 18 (15%) were potentially deployed and 102 (85%) were non-deployed, to receive high-dose vaccine (n=49), low-dose vaccine (n=51), or placebo (n=20). Participants were followed up for 6 months. No vaccine-related serious adverse events were reported. We recorded local adverse events in 30 (75%) of 40 participants in the high-dose group, 33 (79%) of 42 participants in the low-dose group, and five (25%) of 20 participants in the placebo group. Fatigue or malaise was the most common systemic adverse event, reported in 25 (62%) participants in the high-dose group, 25 (60%) participants in the low-dose group, and five (25%) participants in the placebo group, followed by headache, reported in 23 (57%), 25 (60%), and three (15%) participants, respectively. Fever occurred 24 h after injection in 12 (30%) participants in the high-dose group and 11 (26%) participants in the low-dose group versus one (5%) participant in the placebo group. Geometric mean concentrations of IgG antibodies against Ebola glycoprotein peaked on day 28 at 51 μg/mL (95% CI 41·1-63·3) in the high-dose group, 44·9 μg/mL (25·8-56·3) in the low-dose group, and 5·2 μg/mL (3·5-7·6) in the placebo group, with respective response rates of 96% (95% CI 85·7-99·5), 96% (86·5-99·5), and 5% (0·1-24·9). Geometric mean concentrations decreased by day 180 to 25·5 μg/mL (95% CI 20·6-31·5) in the high-dose group, 22·1 μg/mL (19·3-28·6) in the low-dose group, and 3·2 μg/mL (2·4-4·9) in the placebo group. 28 (57%) participants given high-dose vaccine and 31 (61%) participants given low-dose vaccine developed glycoprotein-specific CD4 cell responses, and 33 (67%) and 35 (69%), respectively, developed CD8 responses.
INTERPRETATION: ChAd3-EBO-Z was safe and well tolerated, although mild to moderate systemic adverse events were common. A single dose was immunogenic in almost all vaccine recipients. Antibody responses were still significantly present at 6 months. There was no significant difference between doses for safety and immunogenicity outcomes. This acceptable safety profile provides a reliable basis to proceed with phase 2 and phase 3 efficacy trials in Africa.
FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), through the EU Horizon 2020 Research and Innovation Programme
- …