6,568 research outputs found
Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle
The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data
Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation
We propose to measure nonadiabaticity of molecular quantum dynamics
rigorously with the quantum fidelity between the Born-Oppenheimer and fully
nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies
in situations where other criteria, such as the energy gap criterion or the
extent of population transfer, fail. We further propose to estimate this
quantum fidelity efficiently with a generalization of the dephasing
representation to multiple surfaces. Two variants of the multiple-surface
dephasing representation (MSDR) are introduced, in which the nuclei are
propagated either with the fewest-switches surface hopping (FSSH) or with the
locally mean field dynamics (LMFD). The LMFD can be interpreted as the
Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used
previously in the nonadiabatic semiclassical initial value representation. In
addition to propagating an ensemble of classical trajectories, the MSDR
requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or
more generally, the quantum Liouville-von Neumann) equation for a single
discrete degree of freedom. The MSDR can be also used to measure the importance
of other terms present in the molecular Hamiltonian, such as diabatic
couplings, spin-orbit couplings, or couplings to external fields, and to
evaluate the accuracy of quantum dynamics with an approximate nonadiabatic
Hamiltonian. The method is tested on three model problems introduced by Tully,
on a two-surface model of dissociation of NaI, and a three-surface model
including spin-orbit interactions. An example is presented that demonstrates
the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy
Recommended from our members
Data-driven Recovery of Hand Depth using Conditional Regressive Random Forest on Stereo Images
Hand pose is emerging as an important interface for human-computer interaction. This paper presents a data-driven method to estimate a high-quality depth map of a hand from a stereoscopic camera input by introducing a novel superpixel based regression framework that takes advantage of the smoothness of the depth surface of the hand. To this end, we introduce Conditional Regressive Random Forest (CRRF), a method that combines a Conditional Random Field (CRF) and a Regressive Random Forest (RRF) to model the mapping from a stereo RGB image pair to a depth image. The RRF provides a unary term that adaptively selects different stereo-matching measures as it implicitly determines matching pixels in a coarse-to-fine manner. While the RRF makes depth prediction for each super-pixel independently, the CRF unifies the prediction of depth by modeling pair-wise interactions between adjacent superpixels. Experimental results show that CRRF can generate a depth image more accurately than the leading contemporary techniques using an inexpensive stereo camera
Conditional Regressive Random Forest Stereo-based Hand Depth Recovery
This paper introduces Conditional Regressive Random Forest (CRRF), a novel method that combines a closed-form Conditional Random Field (CRF), using learned weights, and a Regressive Random Forest (RRF) that employs adaptively selected expert trees. CRRF is used to estimate a depth image of hand given stereo RGB inputs. CRRF uses a novel superpixel-based regression framework that takes advantage of the smoothness of the hand’s depth surface. A RRF unary term adaptively selects different stereo-matching measures as it implicitly determines matching pixels in a coarse-to-fine manner. CRRF also includes a pair-wise term that encourages smoothness between similar adjacent superpixels. Experimental results show that CRRF can produce high quality depth maps, even using an inexpensive RGB stereo camera and produces state-of-the-art results for hand depth estimation
Adiabatic motion of a neutral spinning particle in an inhomogeneous magnetic field
The motion of a neutral particle with a magnetic moment in an inhomogeneous magnetic field is considered. This situation, occurring, for example, in a Stern-Gerlach experiment, is investigated from classical and semiclassical points of view. It is assumed that the magnetic field is strong or slowly varying in space, i.e., that adiabatic conditions hold. To the classical model, a systematic Lie-transform perturbation technique is applied up to second order in the adiabatic-expansion parameter. The averaged classical Hamiltonian contains not only terms representing fictitious electric and magnetic fields but also an additional velocity-dependent potential. The Hamiltonian of the quantum-mechanical system is diagonalized by means of a systematic WKB analysis for coupled wave equations up to second order in the adiabaticity parameter, which is coupled to Planck’s constant. An exact term-by-term correspondence with the averaged classical Hamiltonian is established, thus confirming the relevance of the additional velocity-dependent second-order contribution
Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory
Non-adiabatic effects play an important role in many chemical processes. In
order to study the underlying non-adiabatic potential-energy surfaces (PESs),
we present a locally-constrained density-functional theory approach, which
enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to
selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs
for defined charge and spin states of the chosen subsystems. The capability of
the method is demonstrated by calculating non-adiabatic PESs for the scattering
of a sodium and a chlorine atom, for the interaction of a chlorine molecule
with a small metal cluster, and for the dissociation of an oxygen molecule at
the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Degenerate Landau-Zener model: Exact analytical solution
The exact analytical solution of the degenerate Landau-Zener model, wherein
two bands of degenerate energies cross in time, is presented. The solution is
derived by using the Morris-Shore transformation, which reduces the fully
coupled system to a set of independent nondegenerate two-state systems and a
set of decoupled states. Due to the divergence of the phase of the off-diagonal
element of the propagator in the original Landau-Zener model, not all
transition probabilities exist for infinite time duration. In general, apart
from some special cases, only the transition probabilities between states
within the same degenerate set exist, but not between states of different sets.
An illustration is presented for the transition between the magnetic sublevels
of two atomic levels with total angular momenta J=2 and 1
Investigation of model validity for numerical survivability testing of WECs
This paper investigates the applicability of two numerical models to assess the survivability of Wave Energy Converters (WECs). Simulations using both a fully nonlinear Navier-Stokes solver (based on OpenFOAM) and WaveDyn (a linear time-domain model for multi-body interactions) are compared with physical experiments involving a free-floating buoy with a single mooring line. Events in which survivability is a concern are modelled using the focus wave-group NewWave. Two wave-groups (one steeper than the other) are used to identify the validity of each numerical model as a function of wave steepness. By taking into account the CPU cost and model validity, the range of applicability for both models is discussed. This constitutes the first step in future work: coupling the two numerical models to form an efficient modelling tool that benefits from the computational efficiency of WaveDyn while including the fidelity of a Navier-Stokes solver when required; therefore providing valuable information for WEC developers
Recommended from our members
Quantized Census for Stereoscopic Image Matching
Current depth capturing devices show serious drawbacks in certain applications, for example ego-centric depth recovery: they are cumbersome, have a high power requirement, and do not portray high resolution at near distance. Stereo-matching techniques are a suitable alternative, but whilst the idea behind these techniques is simple it is well known that recovery of an accurate disparity map by stereo-matching requires overcoming three main problems: occluded regions causing absence of corresponding pixels; existence of noise in the image capturing sensor and inconsistent color and brightness in the captured images. We propose a modified version of the Census-Hamming cost function which allows more robust matching with an emphasis on improving performance under radiometric variations of the input images
State-to-State Differential and Relative Integral Cross Sections for Rotationally Inelastic Scattering of H2O by Hydrogen
State-to-state differential cross sections (DCSs) for rotationally inelastic
scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV
(361 cm-1) collision energy using crossed molecular beams combined with
velocity map imaging. A molecular beam containing variable compositions of the
(J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of
argon seeded with water vapor that is cooled by supersonic expansion to its
lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively).
Angular speed distributions of fully specified rotationally excited final
states are obtained using velocity map imaging. Relative integral cross
sections are obtained by integrating the DCSs taken with the same experimental
conditions. Experimental state-specific DCSs are compared with predictions from
fully quantum scattering calculations on the most complete H2O-H2 potential
energy surface. Comparison of relative total cross sections and state-specific
DCSs show excellent agreement with theory in almost all detailsComment: 46 page
- …
