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Nonadiabatic effects play an important role in many chemical processes. In order to study the underlying
nonadiabatic potential-energy surfaces �PESs�, we present a locally constrained density-functional theory ap-
proach, which enables us to confine electrons to subspaces of the Hilbert space, e.g., to selected atoms or
groups of atoms. This allows one to calculate nonadiabatic PESs for defined charge and spin states of the
chosen subsystems. The capability of the method is demonstrated by calculating nonadiabatic PESs for the
scattering of a sodium and a chlorine atom, for the interaction of a chlorine molecule with a small metal cluster,
and for the dissociation of an oxygen molecule at the Al�111� surface.
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I. INTRODUCTION

Assuming that electrons can react much faster to external
perturbations than nuclei, the Born-Oppenheimer
approximation1 �BOA� is a widely employed approach to
separate electronic and nuclear motion in dynamic processes.
The nuclei then appear static to the electrons, which in turn
set up a potential governing the motion of the nuclei. For-
mally the approach starts with the general many-body
Schrödinger equation

H� = �Tnuc + Vnuc-nuc + He�� = E� , �1�

where Tnuc is the kinetic energy operator of the nuclei,
Vnuc-nuc the interaction potential of the nuclei, and He the
electronic Hamiltonian containing the electron kinetic en-
ergy, as well as the electron-electron and electron-nuclei in-
teractions. In an adiabatic representation,2–4 the general de-
pendence of the full many-body wave function
���ri�i� , �RI�I�� on the position and spin coordinates of all
electrons ri and �i, and on the position and spin coordinates
of all nuclei RI and �I, is written as

� = �
�

��
adia��RI�I����

adia��ri�i�,�RI�I�� , �2�

where the ��
adia are chosen to be the eigenfunctions of the

electronic Hamiltonian at the actual position of the nuclei

He��
adia = E�

e��
adia. �3�

Inserting Eq. �2� into Eq. �1� leads to a set of equations for
the wave functions of the nuclei

E��
adia = �Tnuc + Vnuc-nuc + E�

e���
adia + nonadiabaticity terms,

�4�

in which the “nonadiabaticity terms” summarize matrix ele-
ments of the momentum and kinetic-energy operators of the
nuclear motion. The Born-Oppenheimer approximation cor-
responds to setting these terms to zero, which implies that
the electrons assume their electronic state instantaneously for
any position of the nuclei, unaffected by the nuclear dynam-
ics. The nuclei are then moving on the potential-energy sur-
face �PES� V�

adia=Vnuc-nuc+E�
e, also called the Born-

Oppenheimer surface of the electronic state �.

If, in the BOA, the system is initially in the electronic
ground state, it will remain there irrespective of the dynam-
ics of the nuclei. However, in real life electrons may not be
able to follow the motion of the nuclei instantaneously, and,
e.g., when selection rules apply, they may find themselves in
an excited state. For example, chemical reactions forming
singlet molecules from triplet and singlet reactants are for-
bidden by Wigner’s spin-selection rule. The triplet multiplic-
ity is the actual reason why most reactions of O2 with other
molecules or substances, although being exothermic, do not
proceed at room temperature; they are kinetically hindered.
In other words, in a chemical reaction the spin of the reac-
tants must be conserved or transferred to some other entity.
The transition from the O2 ground state �3�g

−� to the first
excited state �1�g� is strictly forbidden for the isolated mol-
ecule, as is the reverse �deexcitation� process, once the mol-
ecule has been excited to the 1�g state. Thus, when probabili-
ties for transitions between different electronic states are low,
e.g., due to selection rules, the assumption that the system
will always remain in the electronic ground state may be-
come incorrect. For the mentioned O2 example this implies
that when an external field shifts the 1�g energy below the
3�g

− energy, the probability for an electronic transition toward
the 1�g state will be low. Indeed, this is an important aspect
of the O2/Al�111� interaction, one of our examples discussed
below.

For such, or alike situations it is necessary to go beyond
the BOA and to consider the coupling between different
states.5,6 For a full description the nonadiabaticity terms must
be calculated, which in practice means to evaluate the matrix
elements for the derivative couplings of the nuclear and elec-
tronic motion. For this, the use of another set of electronic
functions ���

dia� in the wave function expansion in Eq. �2�
may be suitable. The idea behind such “diabatic” states is
that in a dynamic �scattering� event, the electrons lag behind
the nuclear motion and thus tend to conserve a given �initial�
character of the electronic structure. Formally, the ���

dia� are
then constructed to minimize the nuclear derivative coupling
terms, such that the matrix representation of the nuclear mo-
mentum operator becomes diagonal in the diabatic basis.6–8

The equivalent to Eq. �4� in a diabatic representation is thus
a matrix equation
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�
�

�Tnuc	�� + Vnuc-nuc	�� + H��
e ���

dia = E���
dia, �5�

where the diagonal elements of the potential V�
dia=Vnuc-nuc

+H��
e are the diabatic PESs, and the off-diagonal elements

H��
e describe the coupling between PES � and PES �. For

the above example of an O2 molecule, a suitable diabatic
state would, e.g., be given by the 3�g

− state of the isolated
molecule, and the corresponding diabatic PES can be used to
describe the motion of a molecule that tries to conserve this
electronic configuration, even in regions where external
fields �or interactions with other species� bring the 1�g below
the 3�g

− energy.
The aim of this work is to develop and apply a nonadia-

batic approach, with a similar physical motivation as the dia-
baticity concept. We account for the tendency to maintain a
given character of the electronic structure, e.g., due to selec-
tion rules, by focusing on the dynamics of a system with
defined charge and spin in suitably chosen subsystems, typi-
cally the two reactants in a scattering event. Using again the
example of an O2 molecule, this could, e.g., be a state with
fixed triplet spin on the molecule, even when it interacts with
another reactant. Instead of using the properties of the many-
body wave function as the formal basis, we thus build our
approach on a defined total spin �or total charge, or other
well-defined quantity� in the local Hilbert space of a chosen
subsystem, which can be an atom or a group of atoms. The
thus defined nonadiabatic PESs are computed with density-
functional theory �DFT�,9,10 and, in particular, using the idea
of constrained DFT formulated by Dederichs et al. in 1984.11

The basic idea is to modify the energy functional employed
in DFT by applying physically meaningful constraints. The
constraint is enforced through an additional Lagrange multi-
plier, which on the level of the Kohn-Sham �KS� equations
yields an additional term to the KS effective potential. In the
present work we employ a local constraint via a projection
technique that enables us to freeze the charge and spin of the
chosen subsystems.

Having stated this general philosophy, two points deserve
a critical discussion. First, we like to point out that in prac-
tice our nonadiabatic states may often be close to those of the
diabaticity concept. Still, the formal definition is different,
and in some cases, such as the example of the O2/Al�111�
system discussed below, there are notable differences. In
contrast to recent other works in this area,12,13 we therefore
prefer to refer to our states simply as nonadiabatic states to
underscore this difference to the established diabaticity con-
cept. As a second point, we note that a solid, mathematical
proof of the validity of constrained DFT does not exist. Still,
spin-density functional theory, the Slater-Janak transition
state,11,14,15 the fixed-spin moment �FSM� approach,16 and
some other examples present frequently employed, impor-
tant, and successful applications of essentially the same con-
cept. Our approach represents a mild generalization of such
applications, and our constraint is plausible and physically
meaningful. The spins or charges of two interacting systems
may be hindered to adjust or combine when there are selec-
tion rules, or when the interaction time is very short. Thus,
the appropriate total-energy surfaces of the scattering event

should �up to a certain distance� be that of conserved local
spins or charges.

In a previous publication we have already used the
present approach to resolve a long-standing problem in sur-
face science, namely, the low-sticking probability of oxygen
molecules at the Al�111� surface.17 However, the method is
much more general, as we will illustrate below by also ap-
plying it to two other, nonperiodic model systems, namely, a
scattering event of a sodium and a chlorine atom, and the
interaction of a Cl2 molecule with a magnesium cluster. In
this respect, we also mention notable, independent work of
Wu and Van Voorhis,13,18 which is essentially equivalent to
our approach17 in that also in their work an additional poten-
tial is introduced to constrain electron numbers in well-
defined parts of a system. As in our approach this potential is
determined in a self-consistent way using formally identical
methodology, and has been employed to study charge-
transfer reactions.

II. LOCALLY CONSTRAINED DENSITY-FUNCTIONAL
THEORY

Our locally constrained DFT �LC-DFT� approach starts
by assigning electrons to defined subspaces of the total Hil-
bert space, e.g., to atoms or groups of atoms. This is done by
employing a suitable projection scheme to distinguish the
individual subsystems. In the following sections we will
present this formalism for a system consisting of two sub-
systems called A and B, with straightforward generalization
to more than two subsystems. Considering electrons and
their spin, this leads to four electron numbers NA

↑ , NA
↓ , NB

↑ ,
and NB

↓ , which uniquely define the PES VNA
↑ ,NA

↓ ,NB
↑ ,NB

↓
na ��RI�I��

for the nonadiabatic quantum state with fixed spins and
charges of the subsystems. Expressing the constraints in
terms of auxiliary potentials, the electronic structure problem
is solved self-consistently using DFT, i.e., the electronic
structure is fully relaxed under the given constraints yielding
VNA

↑ ,NA
↓ ,NB

↑ ,NB
↓

na .

A. Definition of the subsystems

In order to assign electrons to the two subsystems, the
Kohn-Sham single-particle wave functions are expanded into
localized, atom-centered basis functions, e.g., Gaussians,
Slater-type orbitals, or numerical orbitals. The implementa-
tion is therefore particularly convenient in codes employing
such basis sets, whereas in codes based on other basis sets,
such as plane waves, the implementation requires intermedi-
ate projection steps onto localized functions.19–21 The Kohn-
Sham orbital 
i

� with index i and spin index �= ↑ ,↓ is thus
written as a linear combination of all basis functions � j, or in
calculations using periodic boundary conditions as a linear
combination of k-dependent Bloch basis functions � j

k

=eikr� j,


i
k� = �

j=1

n

cij
k�� j

k. �6�

In the following our derivation will refer to the periodic case,
while for finite systems the dependence on the k point index
would be simply dropped.
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In the case of atom-centered basis functions each basis
function is uniquely assigned either to subsystem A or to
subsystem B: All basis functions centered at atoms being part
of subsystem A define the Hilbert space of subsystem A, and
all basis functions centered at atoms being part of subsystem
B define the Hilbert space of subsystem B. Every single-
particle wave function can then be projected onto the two
Hilbert subspaces, which is done separately for each k point
and each spin, and taking into account a nonorthogonality of
the atomic orbitals by including the overlap matrix elements
Sjk

k = �� j
k ��k

k�,

pA,i
k� = �
i

k��
i,A
k�� = �

j=1

n

�
k=1

m

cij
k�Sjk

k cik
k�, �7a�

pB,i
k� = �
i

k��
i,B
k�� = �

j=1

n

�
k=m+1

n

cij
k�Sjk

k cik
k�. �7b�

Here, pA,i
k� is the projection onto subsystem A, pB,i

k� the projec-
tion onto subsystem B, and n is the total number of basis
functions, of which the first k=1, . . . ,m are the basis func-
tions of subsystem A. 
i,A

k� is defined as the A component of

i

k�, i.e., all coefficients referring to basis functions of sub-
system B are set to zero. Correspondingly, all coefficients
referring to basis functions of subsystem A are set to zero in
the functions 
i,B

k� with i=m+1, . . . ,n, which define the
complementary B component of 
i

k�. We note that the nor-
malization condition pA,i

k�+ pB,i
k�=1 holds for each state i by

construction, because each 
i,A
k�+
i,B

k�=
i
k� is a normalized

eigenstate. This relation can be used to reduce the computa-
tional effort in that just one of the two double sums in Eq. �7�
needs to be calculated and the other is obtained from the
normalization condition. We note that in this scheme like in
all projection schemes the actual values of pA,i

k� and pB,i
k� de-

pend on the choice of the basis sets defining the Hilbert
spaces of the subsystems.

Having split each single-particle state into an A part and a
B part allows one to construct the partial densities of states
�pDOSs� for subsystems A and B and for the two spin chan-
nels. Summing up the resulting four pDOSs over all occu-
pied single-particle states i yields then the four electron
numbers

NA
� = �

k
�

i
�
j=1

n

�
k=1

m

fi
k�cij

k�Sjk
k cik

k�, �8a�

NB
� = �

k
�

i
�
j=1

n

�
k=m+1

n

f i
k�cij

k�Sjk
k cik

k�, �8b�

where f i
k� is the occupation number of the single-particle

Kohn-Sham state i, typically chosen to be a Fermi function.
With this, also the total spin S of each of the two subsystems
is determined through the difference of the corresponding
electron numbers

SA = �NA
↑ − NA

↓ � , �9a�

SB = �NB
↑ − NB

↓ � . �9b�

B. Constraining the electron numbers

Having established the various electron numbers, we pro-
ceed to introduce the constraint. Aiming to compute the
nonadiabatic PES VNA

↑ ,NA
↓ ,NB

↑ ,NB
↓

na ��RI�I�� representing a defined

spin and charge state in subsystems A and B, we first distrib-
ute the corresponding NA

↑ , NA
↓ , NB

↑ , and NB
↓ electrons into the

four pDOSs derived from the set of Kohn-Sham single-
particle wave functions. This defines four Fermi energies
�F,A
↑ , �F,A

↓ , �F,B
↑ , and �F,B

↓ , as well as four partial electron den-
sities, which sum to the total electron density. If the Fermi
energies were all degenerate at this stage, the chosen nona-
diabatic charge and spin state of the system would corre-
spond to the adiabatic ground state. However, typically the
four Fermi energies are all different, reflecting the fact that
there is no self-consistency between the total electron density
and the effective Kohn-Sham potential.

In order to achieve this self-consistency, we choose to
align the Fermi energies, still requiring that the electron
numbers that can be filled into the four pDOSs up to the
resulting common Fermi level remain unchanged. We there-
fore employ a method that shifts each of the four pDOSs
independently. This is particularly important when hybridiza-
tion between the two subsystems is present and a single-
particle state i contains nonzero expansion coefficients cij

k�

for basis functions belonging to subsystem A, as well as for
basis functions belonging to subsystem B. In such cases, sim-
ply shifting the entire state i as is, e.g., done in the �SCF
method would not change the relative positions of the A and
B Fermi energies. Instead, it is necessary to act separately on
the basis functions in both subsystems. Only this gives the
electronic structure enough flexibility to fully relax under the
imposed constrained electron numbers, which in the end will
yield a different expansion of state i in terms of A and B
basis functions.

In practice, we first align the Fermi energies separately for
each spin. Specifically, we request that �F,A

� =�F,B
� =�F

�, and
appropriately shift the A and B Fermi energies to the Fermi
energy �F

�. This is achieved by adding to the Kohn-Sham
Hamiltonian auxiliary potentials that act differently on the A
and B basis functions. These auxiliary potentials consist of a
“strength” factor 
� and a projection operator Pk onto the
subspaces


A
�PA

k =
1

2

A

�	�
i=1

m

��i
k���ik� + �

i=1

m

��ik���i
k�
 , �10a�


B
�PB

k =
1

2

B

�	 �
i=m+1

n

��i
k���ik� + �

i=m+1

n

��ik���i
k�
 , �10b�

where the summation is done over the m basis functions
spanning the Hilbert space of subsystem A and the n-m basis
functions spanning the Hilbert space of subsystem B. In the
chosen form Pk symmetrically contains covariant and con-
travariant basis functions,22,23 �i

k and �i,k, respectively. The
resulting matrix representations of PA

k and PB
k in the Hilbert

space spanned by the Bloch basis functions is then Hermit-
ian, which facilitates the implementation into existing DFT
codes as further described below. As derived in the Appendix
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for subsystem A, the form of these matrices is as shown
schematically in Fig. 1. The matrix element PA,ij

k is equal to
the overlap matrix element Sij

k , if i and j both refer to basis
functions assigned to subsystem A. If only i or j refer to a
basis function assigned to subsystem A, the matrix element is
1
2Sij

k . Finally, if neither i nor j belong to subsystem A, PA,ij
k is

zero, reflecting that the pDOS of subsystem B is not affected
by the auxiliary potential 
A

�PA
k. The auxiliary potential 
B

�PB
k

has an analogous structure.
Since the purpose of the auxiliary potentials is to align the

Fermi energies of subsystems A and B with �F
�, the obvious

choice for the “strength” factors 
A
� and 
B

� is


A
� = �F,A

� − �F
�, �11a�


B
� = �F,B

� − �F
�. �11b�

However, because of the resulting nonzero auxiliary poten-
tials, the initial single-particle states are no longer solutions
of the new effective Hamiltonian for each spin, comprised of
both the Kohn-Sham Hamiltonian and the auxiliary poten-
tial. As a result, 
A

� and 
B
� must be determined self-

consistently. Diagonalization of the new effective Hamilto-
nians yields new eigenvectors to construct new partial
densities of states, the Fermi levels of which define new
strength factors through Eq. �11�. This is repeated in a self-
consistency �SC� cycle, until the Fermi energies of sub-
systems A and B are aligned to an arbitrary precision �for
each spin channel�,

�F
↑ = �F,A

↑ = �F,B
↑ , �12a�

�F
↓ = �F,A

↓ = �F,B
↓ . �12b�

The ensuing step of aligning the two different spin Fermi
energies �F

↑ and �F
↓ is done in an analogous way, i.e., by

adding another auxiliary potential of the form of Eq. �10�. In
this case, the matrix structure of the corresponding projection
operator Pk onto one spin subspace is simpler though. Since
this subspace is spanned by all n basis functions, regardless
of whether they are in subsystem A or B, the sum in Eq. �10�
goes up to n, and the matrix representation of Pk becomes
simply the overlap matrix, cf. Fig. 1 with m=n. Adding an
auxiliary potential 
�Pk to the effective Hamiltonian result-
ing from the preceding alignment of the A and B Fermi en-
ergies, corresponds therefore to a mere shift of the eigenval-
ues, depending on the chosen strength factor 
�. Here we
choose to shift the spin-up and spin-down pDOSs in opposite

directions using ��F= 1
N ��F

↑ −�F
↓�, 
↑= +N↓��F and


↓=−N↑��F with N↑=NA
↑ +NB

↑ , N↓=NA
↓ +NB

↓ , and N=N↑+N↓.
As before, this procedure has to be done in a self-consistent
way, since adding the new auxiliary potential modifies the
effective Hamiltonian. In fact, since the alignment of the A
and B Fermi levels and the alignment of the spin-up and
spin-down Fermi levels is not independent of each other, the
two SC cycles must be nested. Discussing below how this
can be implemented in a numerically efficient way into ex-
isting DFT codes, we note that once the double self-
consistency is achieved, we arrive at a final common Fermi
level in the system and a new set of single-particle states i
�with eigenvalues �i�

� and eigenvectors 
i�
�� that is the self-

consistent solution to the effective Hamiltonian, containing
the original Kohn-Sham Hamiltonian and the two auxiliary
potentials. In each subspace spanned by the Bloch basis
functions at one k point we therefore have

Heff
k 
i�

k� = �HKS
k + 
A,SCF

� PA
k + 
B,SCF

� PB
k + 
SCF

� Pk�
i�
k�

= �i�
k�
i�

k�, �13�

with strength factor values 
A,SCF
� , 
B,SCF

� , and 
SCF
� as deter-

mined in the last cycle of the nested SC loops.

C. Numerical considerations

At this stage it is appropriate to recall what has been
achieved so far. The imposed constraint of fixed electron
numbers NA

↑ , NA
↓ , NB

↑ , and NB
↓ has been suitably transformed

into external potentials. Adding these to the Kohn-Sham
Hamiltonian led to the effective Hamiltonian of Eq. �13�. As
proven by the Hohenberg-Kohn theorem, the electron density
resulting from occupying all single-particle states up to the
common Fermi level corresponds therefore to the fully re-
laxed electronic structure under the given constraint. Calcu-
lating the total energy ENA

↑ ,NA
↓ ,NB

↑ ,NB
↓

e connected to this electron

density provides then �together with Vnuc-nuc� the nonadia-
batic PES VNA

↑ ,NA
↓ ,NB

↑ ,NB
↓

na , representing the chosen spin and elec-

tron numbers in the two subsystems.
As much as the total energy, also any other quantity that is

a function of the electron density can be computed. However,
care has to be taken, if the actual calculation involves terms
that explicitly contain the single-particle eigenvalues. This
becomes apparent when writing �i�

k� with Eq. �13� as

�i�
k� = �
i�

k��HKS
k �
i�

k�� + �
i�
k���
A,SCF

� PA
k + 
B,SCF

� PB
k

+ 
SCF
� Pk��
i�

k�� = �i,KS�k� + ��i,pot�k� , �14�

which shows that �i�
k� contains actually two contributions, of

which only the first, �i,KS�k� , really reflects the modified elec-
tronic structure. The second term, ��i,pot�k� , is spurious and
results from the aligning potentials. When evaluating terms
containing single-particle eigenvalues, one should therefore
either directly use �i,KS�k� or correct the spurious contribution
through correspondingly computed terms containing ��i,pot�k� .
This mainly applies to the Pulay force correction term, which
depends explicitly on the single-particle eigenvalues.25,26

Finally, we mention some numerical considerations. At
first glance, it appears as if our LC-DFT formalism builds on

FIG. 1. Matrix representation of the projection operators PA
k and

PB
k in the Hilbert space of the Bloch basis functions � j

k. The Sij
k are

the overlap matrix elements between basis functions i and j. n is the
total number of basis functions and m is the number of basis func-
tions of subsystem A.
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the self-consistent solutions to the Kohn-Sham Hamiltonian
and then requires two additional nested SC loops. However,
for the latter self-consistency under the imposed constraint
there is no need to start with self-consistent Kohn-Sham so-
lutions. Additionally, the mere eigenvalue shift induced by
the spin Fermi-level alignment step is nicely compatible with
the structure of existing DFT codes. From a computational
point of view, our algorithm can thus be implemented as one
additional SC cycle at each iteration of the existing elec-
tronic SC cycle in a DFT code. Of course, all known ap-
proaches to improve the convergence of SC cycles such as
the use of sophisticated mixing schemes can equally be ap-
plied to the additional cycle. Having implemented a Pulay
mixing scheme,24 our experience was that for the tested sys-
tems only the very first DFT iterations required a significant
number of inner iterations, typically about 5–10, while close
to the outer self-consistency also the inner self-consistency
was often directly reached after the first iteration. For the
example involving the Al�111� surface, we even found the
overall DFT convergence, i.e., the number of iterations in the
outer SC cycle, frequently much improved compared to stan-
dard adiabatic calculations, because the oscillation of states
around the Fermi level is reduced when controlling the elec-
tron numbers and thereby also the occupation numbers of the
Kohn-Sham states close to the Fermi level. For the systems
with localized electronic states, we found that using the spins
or electron numbers in the subsystems as convergence crite-
rion for the self-consistency was sometimes preferred to the
equality of the Fermi energies. Overall, for the systems stud-
ied, the cost of the calculations using the constraint was thus
often about the same and sometimes even lower than the cost
of standard adiabatic calculations.

D. Comparison to �SCF and fixed-spin moment

An important characteristic of the LC-DFT approach pre-
sented here is that it is parameter-free and only the set of the
electron numbers in the four channels defining the nonadia-
batic state of interest has to be specified. Under this con-
straint, the electronic structure is fully relaxed, i.e., the par-
tial densities of states are not frozen and shifted statically.
Instead, the single-particle states are flexible to vary the con-
tribution of each basis function to each single-particle state
freely. This can lead to a significant improvement compared
to the two prominent and widely employed implementations
of the constrained DFT concept, the �SCF �Ref. 14� and the
fixed-spin moment approach.16 In the latter approach the sys-
tem is only separated into a spin-up and a spin-down chan-
nel, which are filled independently. In LC-DFT we go a step
further and allow one also to distribute the spin-up and spin-
down electrons in a well-defined way into the two sub-
systems, which permits a more general control over the spa-
tial distribution of the electron and magnetization densities.
The different results obtained with both methods are particu-
larly obvious for the oxygen dissociation at the Al�111� case
described in Sec. III C below.

The improvement compared to the �SCF method con-
cerns extended systems. Both approaches have in common
that they consider two subsystems and first analyze the

pDOSs to determine the contributions of each subsystem to
the individual single-particle states. However, in the �SCF
method the states with high A parts are then completely as-
signed to subsystem A, regardless of their B contributions,
while the states with small A contributions are completely
assigned to subsystem B.28 A subsequent occupation of the
states by 0 or 1 electrons is therefore only fully justified for
the typically not interesting case of noninteracting sub-
systems, i.e., no hybridization. Otherwise it results in frac-
tional effective occupation numbers of the individual sub-
systems, which necessarily introduces some uncertainty in
the total energies obtained in the �SCF method. The LC-
DFT approach, on the other hand, allows for a physical re-
hybridization of the states under the imposed constraint. It
thus conserves the electron numbers of both subsystems,
while at the same time fully taking hybridization into ac-
count. This is the main difference between the present LC-
DFT formalism and the �SCF method, while in the limit of
infinitely separated subsystems both approaches are equiva-
lent.

It is finally also important to note that all methods dis-
cussed here, the FSM approach, the �SCF method, and the
LC-DFT formalism, intend to overcome limitations in the
description of chemical processes by controlling the electron
numbers. This obviously does not allow one to overcome
approximations in the employed exchange-correlation �xc�
functional. Local-density or gradient-corrected xc function-
als are, e.g., known to cause inaccuracies in the energy split-
tings between different spin multiplets.29–31 To this end, we
note that in the limit of infinite separation between the sub-
systems �reactants�, our approach reduces to the description
of two isolated subsystems. The nonadiabatic states of de-
fined spin or charge in our approach are then simply the
corresponding excited states of the isolated subsystems, i.e.,
of the noninteracting reactants. It is worthwhile to point out
that this is different to the diabaticity concept, which reduces
in this limit of infinite separation to the adiabatic �excited�
states of the interacting system. If there is a �unphysical�
charge or spin transfer even at these distances �as in the
example of O2/Al�111� discussed below�, it will be present
in both the adiabatic and the diabatic description, but not in
our nonadiabatic approach.

III. APPLICATIONS

As an important application of the LC-DFT method we
now illustrate its use in the calculation of nonadiabatic PESs
that are of interest in the investigation of dynamic processes.
Specifically, we focus here on the scattering of atoms or
molecules in crossed molecular beams or at solid surfaces.
As a side effect this also shows how the method can be
employed to suitably restrict unwanted electron transfer be-
tween weakly or noninteracting subsystems. In a DFT calcu-
lation, such an electron transfer will, e.g., occur whenever an
occupied level of subsystem A is higher in energy than an
unoccupied level of subsystem B. Alignment of the Fermi
levels of the two systems will then lead to a fractional occu-
pation of both states in the self-consistent solution, even if
the distance between the two subsystems is macroscopic. A
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prominent example for this is the interaction of an oxygen
molecule with the Al�111� surface, where the unoccupied
2�*↓ orbitals of the molecule are lower than the Fermi level
of the metal.17,27 The resulting electron transfer lowers the
total energy of the system and at macroscopic distances the
latter does then not converge to the physically correct limit,
given by the sum of the total energies of the isolated mol-
ecule and the isolated surface.

As an example for an extended periodic system, we cor-
respondingly briefly discuss the interaction of O2 with the
Al�111� surface. In addition, we also present calculated nona-
diabatic PESs for two finite model systems, namely, for the
scattering of Na and Cl, and the scattering of Cl2 at a small
Mg4 cluster. All calculations have been carried out using the
all-electron DFT code DMol3, which employs numerical
atomiclike orbitals as basis functions.32 Unless otherwise
noted, we employ the DMol3 standard basis set “all” consist-
ing of atomic orbitals and polarization functions,32 a real-
space cutoff of 12 bohrs for the basis functions, and the PBE
�Ref. 33� xc functional.

A. Na+Cl

In the scattering of a sodium and a chlorine atom, two
nonadiabatic states of interest are the ionic PES “Na++Cl−”
and the neutral PES “Na+Cl.” Since both neutral atoms are
spin doublets in their ground states, there are two possible
relative orientations of the spins in the latter case, yielding an
overall singlet �antiparallel spins� or triplet �parallel spins�
neutral state. Identifying each atom as one subsystem in our
LC-DFT approach, Table I shows the constrained electron
and spin numbers we used to represent each of these nona-
diabatic states. The resulting PESs as a function of the inter-
atomic separation are shown in Fig. 2, in which we addition-
ally include the computed adiabatic ground state PES and the
PES as resulting from a FSM calculation for an overall spin-
triplet state �N↑=15, N↓=13�. In both the latter PES and the
neutral triplet PES there are therefore two unpaired electrons,

but only the neutral triplet PES computed by LC-DFT has
the additional control of locating one unpaired electron ex-
plicitly at each atom.

For bond lengths lower than 8 Å, the energetically most
favorable nonadiabatic state is found to be the ionic PES,
whereas for larger distances these are the degenerate singlet
and triplet neutral PESs. The degeneracy of the latter two
PESs is only lifted for distances smaller than 5 Å, at which
the Pauli repulsion between the two unpaired spin-up elec-
trons leads to a strong increase of the neutral triplet PES.
Interestingly, the FSM curve is for all distances virtually de-
generate to this neutral triplet PES, indicating that even with-
out constraint one unpaired electron wants to stay at each
atom. The minimum of the adiabatic PES, on the other hand,
is somewhat lower than the minimum of the ionic PES,
showing that the electron transfer in the adiabatic case differs
slightly from the one electron imposed in the LC-DFT com-
putation.

Another prominent feature of Fig. 2 is that for large inter-
atomic separations the adiabatic PES is about 1 eV lower
than the limit of neutral separated atoms. This is an illustra-
tion of the above described electron transfer problem in adia-
batic calculations. Even for infinite interatomic distances, a
small amount of charge is transferred from the sodium to the
chlorine atom, since the lowest unoccupied 3p↓ state
�LUMO� of the latter, is lower in energy than the highest
occupied 3s↑ state �HOMO� of the sodium atom. In the self-
consistent calculation, electron density is consequently trans-
ferred, until the Fermi levels of the two atoms are aligned. At
infinite separation between the two atoms, this charge trans-
fer can be determined quantitatively by calculating the Na
Kohn-Sham HOMO and Cl Kohn-Sham LUMO-level ener-
gies as a function of different occupations. The results ob-
tained from calculations of the isolated charged atoms are
displayed in Fig. 3 and show that HOMO and LUMO are
only aligned after an electron transfer of 0.37e. This unphysi-
cal electron transfer at infinite separations is not possible in
the LC-DFT approach by construction, explaining why in
contrast to the adiabatic PESs the neutral triplet and singlet
PESs approach the correct limit.

TABLE I. Constrained electron numbers for the three test sys-
tems discussed.

Na+Cl

NNa
↑ NNa

↓ NCl
↑ NCl

↓

Ionic 5 5 9 9

Neutral, singlet 6 5 8 9

Neutral, triplet 6 5 9 8

Mg4+Cl2
NMg4

↑ NMg4

↓ NCl2
↑ NCl2

↓

Neutral 24 24 17 17

Ionic, singlet 23 24 18 17

Ionic, triplet 24 23 18 17

O2+Al�111�
NO2

↑ NO2

↓ NAl�111�
↑ NAl�111�

↓

Neutral, triplet 18 14 409.5 409.5

FIG. 2. �Color online� Nonadiabatic PESs for the scattering of a
Na and a Cl atom. Shown are the energies as a function of the
interatomic distance Z. See Table I and the text for the constrained
electron numbers defining the various nonadiabatic PESs. Addition-
ally shown are the adiabatic ground state PES and the PES obtained
with a FSM triplet calculation. The energy zero corresponds to the
energy of the two isolated, neutral atoms.
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Finally, we also employed this system to test the proper
evaluation of the forces in the constrained LC-DFT calcula-
tions. Taking the example of the ionic PES, Fig. 4 shows the
force on the Cl atom computed either analytically within the
LC-DFT approach or numerically by differentiating the PES
shown in Fig. 2. The agreement is excellent proving that
forces can be computed accurately within the LC-DFT ap-
proach.

B. Mg4+Cl2

As a simple example for subsystems consisting of groups
of atoms we discuss the interaction of a Cl2 molecule with a
small metal cluster formed of a tetrahedron of four magne-
sium atoms. To illustrate the method we restrict ourselves
here to computing the PESs as a function of the distance of a
Cl2 molecule approaching the Mg3 plane of the cluster as
explained in Fig. 5. For this we first relaxed the structure of
the cluster and the Cl2 molecule separately, and then held the
resulting Mg-Mg bond lengths of 3.07 Å and the Cl-Cl bond
length of 2.03 Å fixed in the subsequent calculations. Using

the electron numbers compiled in Table I, we calculated the
nonadiabatic PESs corresponding to the neutral, the ionic-
singlet, and the ionic-triplet state. Together with the adiabatic
PES, the resulting curves are shown in Fig. 5. At all dis-
tances, the nonadiabatic state corresponding to a neutral con-
figuration exhibits the lowest energy, with the two ionic
curves exhibiting significantly higher energies. Similar to the
Na+Cl case the latter two become degenerate at larger dis-
tances, when the Pauli repulsion affecting the ionic triplet
curve becomes negligible. The closeness of the nonadiabatic
neutral curve to the adiabatic result indicates only a compa-
rably small electron transfer from the cluster to the molecule
during the scattering process. In this case, there is therefore
also only a small electron transfer problem and the adiabatic
curve approaches the proper limit for large molecule-cluster
separations. By differently occupying the Kohn-Sham
HOMO and LUMO levels as done in Fig. 3, we indeed ob-
tain only a very small electron transfer of 0.02e that is re-
quired to align the Fermi energies in this case.

C. O2 dissociation at Al(111)

As a final example for an extended system, treated by
periodic boundary conditions, we turn to the dissociation of
an O2 molecule at the Al�111� surface. For this system the
postulated dominant role of nonadiabatic effects17,27,34 could
not be verified until recently, since only empirical estimates
of the underlying nonadiabatic PESs were available.35–37 Us-
ing LC-DFT we now focus on the nonadiabatic neutral triplet
PES, which is a suitable representation at large distances
from the surface, where the gas-phase O2 molecule will be in
its spin-triplet ground state and the Al�111� surface in a spin-
singlet state. For the calculations we employed a �3�3�
Al�111� slab consisting of seven aluminum layers, separated
by a 30 Å vacuum. Oxygen is adsorbed at both sides of the
slab to establish inversion symmetry, a real-space cutoff of
9 bohrs has been applied to the basis functions, and ten k
points have been used to sample the irreducible wedge of the
Brillouin zone. The electron numbers of the oxygen and the

FIG. 3. �Color online� Level energy of the highest occupied
Kohn-Sham molecular orbital �HOMO� of a free Na atom and of
the lowest unoccupied Kohn-Sham molecular orbital �LUMO� of a
Cl atom as a function of the electronic occupation. The occupations
in the two separate calculations of the isolated atoms are varied in
the form of a charge transfer, i.e., the Na atom is computed with a
fraction of an electron removed, and the Cl atom is computed with
this fraction of an electron added.

FIG. 4. Force acting on the Cl atom in the NaCl dimer as a
function of the interatomic distance Z for the ionic PES. Filled
squares represent the forces calculated within the LC-DFT approach
and open triangles represent the forces resulting from a numerical
differentiation of the PES shown in Fig. 2.

FIG. 5. �Color online� Nonadiabatic PESs of a Cl2 molecule
scattering at a Mg4 cluster. Shown are the energies as a function of
the distance Z of the centers-of-mass of the Cl2 molecule and the
Mg4 cluster, with a scattering geometry as explained in the inset.
See Table I and the text for the constrained electron numbers defin-
ing the various nonadiabatic PESs. Additionally shown is the adia-
batic ground-state PES, and the energy zero corresponds to the en-
ergy of the isolated neutral Cl2 molecule and Mg4 cluster.
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aluminum subsystem used to define the neutral triplet PES
are listed in Table I.

Discussing our results for the high-dimensional PES in
detail elsewhere,17,38 we illustrate the insights gained by the
LC-DFT approach by concentrating on the two-dimensional
dependence on the molecular bond length r and the center-
of-mass distance of the molecule from the surface Z for a
fixed molecular orientation and lateral position over the sur-
face. Figure 6 shows corresponding “elbow plots” specifi-
cally for an O2 molecule approaching the surface head-on
and above an fcc site. In agreement with previous studies27,34

the adiabatic PES displayed in Fig. 6�a� does not exhibit an
energy barrier to dissociation, a finding that cannot be rec-
onciled with the experimentally well-established low stick-
ing coefficient for thermal molecules.17,39 Suspecting a domi-
nant role of nonadiabatic effects as the reason for this
discrepancy, we turn to nonadiabatic representations, in
which particularly the spin-triplet character of the gas-phase
O2 molecule is conserved. Figures 6�b� and 6�c� show corre-
sponding PESs obtained with the FSM approach for an over-
all triplet state of the system and with our LC-DFT approach
constraining the spin-triplet to the O2 molecule, respectively.
In contrast to the Na+Cl neutral triplet PES discussed above,
the FSM and LC-DFT approach now yield qualitatively dif-
ferent results. While no barrier is obtained in the prior
method, the neutral triplet PES calculated with LC-DFT ex-
hibits a clear energy barrier.

The reason for this difference is the different distribution
of the magnetization density in the system. This is illustrated
for a molecular configuration at the energy barrier in Fig. 7.
In �a� the magnetization density computed for the free oxy-
gen molecule �i.e., without the Al�111� slab� in its spin-triplet
ground state is shown, whereas �b� displays the result of an
adiabatic calculation including the Al�111� slab. In the latter
case, neither the O2 molecule, nor the metal atoms exhibit
any spin-polarization, which is the most favored state for
small molecule-surface separations. In the FSM calculation,

the total spin of the system is forced to be a triplet, but as
apparent from �c� the majority of this excess spin is not lo-
cated at the O2 molecule, but distributed over the entire
metal slab. In contrast to this, in the LC-DFT result shown in
�d� the triplet spin is localized at the oxygen molecule, re-
flecting the improved control over the spatial distribution of
the magnetization density in the latter approach. The accu-
mulation of spin-up density on the O2 molecule repels the

FIG. 7. �Color online� Magnetization density �difference be-
tween spin-up and spin-down electron density� for a molecule at the
energy barrier of the LC-DFT triplet PES �r=1.4 Å, Z=1.8 Å, as
marked in Fig. 6�. Shown is a two-dimensional cut perpendicular to

the surface and through the O2 molecule, along the �011̄� and �111�
direction. The position of the two O atoms are marked as small
black circles. The position of the Al atoms are marked as small
white circles. �a� Isolated O2 molecule in its spin-triplet ground
state, �b� adiabatic calculation for O2/Al�111�, �c� triplet FSM cal-
culation for O2/Al�111�, and �d� neutral triplet LC-DFT calculation
for O2/Al�111�.

FIG. 6. �Color online� Two-dimensional cut �“elbow plot”� through the high-dimensional PES for the O2 dissociation at Al�111�. The
energy is shown as a function of the center-of-mass distance of the molecule from the surface Z and the oxygen-oxygen bond length r. The
molecule approaches the surface head-on above an fcc site as explained in the insets. �a� Adiabatic calculation. �b� Triplet fixed-spin moment
calculation. �c� Neutral triplet LC-DFT calculation. Only the latter PES exhibits an energy barrier. The energy difference between the contour
lines is 0.2 eV and the small white circle denotes the molecular position discussed in Fig. 7.
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spin-up density of the metal slab towards the interior of the
slab, while there is a strong accumulation of spin-down den-
sity close to the molecule. As a consequence, the metal slab
is still in an overall singlet state in the LC-DFT calculation,
which is obviously a better representation of the nonadia-
batic state defined by an impinging triplet O2 molecule com-
pared to the FSM result. In addition, the LC-DFT approach
overcomes the small charge-transfer problem present in this
system, as well. Since the unoccupied 2�*↓ orbitals of the O2
molecule are lower than the Fermi level of the metal, the
adiabatic calculation yields a charge transfer of 0.01e to the
O2 molecule even at macroscopic distances from the surface.

IV. SUMMARY

In summary, we presented a locally constrained density-
functional-theory �LC-DFT� approach, which allows one to
confine electrons to subspaces of the Hilbert space, e.g., to
selected atoms or groups of atoms. A major application of
this technique is the computation of nonadiabatic potential-
energy surfaces, which we illustrated with examples treating
the scattering of atoms and molecules at other atoms, clus-
ters, or surfaces. Following the general formulation by De-
derichs et al.,11 the electron confinement is realized by suit-
ably introducing additional constraints to the electronic
Hamiltonian. DFT is then used to obtain the fully relaxed
electronic structure under the additional external potential
imposed by the applied constraints. With the �SCF and FSM
methods as widely employed alternative implementations of
this general concept, our LC-DFT method offers a more sys-
tematic approach to extended systems compared to �SCF,
and better control over the spatial distribution of the con-
straint electrons compared to FSM. This better spatial control
allows one also to overcome the charge-transfer problem be-
tween widely separated subsystems that can occur in adia-
batic DFT calculations.
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APPENDIX: PROJECTION OPERATOR

In general, localized atom-centered basis functions such
as atomic orbitals are not orthogonal, and a projection opera-
tor should be formulated in terms of covariant and contra-
variant basis functions.22,23 The covariant Bloch basis func-
tions ��i

k� and the contravariant Bloch basis functions �� jk�
are related to each other by the equations

�� jk� = �
i=1

n

�Sij
k�−1��i

k� , �A1a�

�� jk� = �
i=1

n

��i
k��Sij

k�−1, �A1b�

��i
k� = �

j=1

n

Sji
k�� jk� , �A1c�

��i
k� = �

j=1

n

�� jk�Sji
k , �A1d�

with Sk being the overlap matrix. For covariant and contra-
variant basis functions the following orthonormality relation
holds:

��ik�� j
k� = ��i

k�� jk� = 	ij , �A2�

where 	ij is the Kronecker symbol.
In principle there are two possible forms of the projection

operator PA
k into the subsystem A, which are equivalent.

PA
k = �

i=1

m

��i
k���ik� , �A3a�

PA
k = �

i=1

m

��ik���i
k� , �A3b�

and where the sum i=1, . . . ,m runs over the m basis func-
tions of subsystem A. However, expanded onto the Bloch
basis functions, both these formulations for PA

k yield non-
Hermitian matrices. In order to facilitate the implementation
into existing DFT codes, we therefore prefer to work with
the following symmetrized form, which does lead to a Her-
mitian matrix:

PA
k =

1

2
	�

i=1

m

��i
k���ik� + �

i=1

m

��ik���i
k�
 . �A4�

Inserting the expressions for the contravariant basis func-
tions in Eq. �A1� enables us to express the projection opera-
tor entirely in terms of the known covariant basis functions
�the atomic orbitals�,

PA
k =

1

2
	�

i=1

m

�
j=1

n

��i
k��Sji

k�−1�� j
k� + �

i=1

m

�
j=1

n

�� j
k��Sji

k�−1��i
k�
 .

�A5�

Starting from this expression, we can then derive the matrix
representation of this operator in the Hilbert space spanned
by the Bloch basis functions
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PA,ij
k = ��i

k�PA
k�� j

k� =
1

2
��i

k�	�
k=1

m

�
l=1

n

��k
k��Slk

k �−1��l
k� + �

r=1

m

�
s=1

n

��s
k��Ssr

k �−1��r
k�
�� j

k�

=
1

2
	�

k=1

m

�
l=1

n

��i
k��k

k��Slk
k �−1��l

k�� j
k� + �

r=1

m

�
s=1

n

��i
k��s

k��Ssr
k �−1��r

k�� j
k�
 =

1

2
	�

k=1

m

�
l=1

n

Sik
k �Slk

k �−1Slj
k + �

r=1

m

�
s=1

n

Sis
k �Ssr

k �−1Srj
k


=
1

2
	�

k=1

m

Sik
k 	kj + �

r=1

m

	irSrj
k
 = 


Sij
k for i � m ∧ j � m

1

2
Sij

k for i � m ∨ j � m

0 for i � m ∧ j � m .
� �A6�
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