3,228 research outputs found

    Cluster Mergers, Radio Halos and Hard X-ray Tails: A Statistical Magneto-Turbulent Model

    Full text link
    There is now firm evidence that the ICM consists of a mixture of hot plasma, magnetic fields and relativistic particles. The most important evidences for non-thermal phenomena in galaxy clusters comes from the diffuse Mpc-scale synchrotron radio emission (radio halos) observed in a growing number of massive clusters (Feretti 2003) and from hard X-ray (HXR) excess emission (detected in a few cases) which can be explained in terms of IC scattering of relativistic electrons off the cosmic microwave background photons (Fusco-Femiano et al. 2003). There are now growing evidences that giant radio halos may be naturally accounted for by synchrotron emission from relativistic electrons reaccelerated by some kind of turbulence generated in the cluster volume during merger events (Brunetti 2003). With the aim to investigate the connection between thermal and non-thermal properties of the ICM, we have developed a statistical magneto-turbulent model which describes the evolution of the thermal and non-thermal emission from clusters. We calculate the energy and spectrum of the magnetosonic waves generated during cluster mergers, the acceleration and evolution of relativistic electrons and thus the resulting synchrotron and inverse Compton spectra. Here we give a brief description of the main results, while a more detailed discussion will be presented in a forthcoming paper. Einstein-De Sitter cosmology, Ho=50H_o=50 km s−1s^{-1}Mpc−1Mpc^{-1}, qo=0.5q_o=0.5, is assumed.Comment: 3 pages, 2 figures. To appear in the proceedings of IAU Colloquium 195 - "Outskirts of galaxy clusters: intense life in the suburbs", Torino, Italy, March 12-16, 200

    Statistics of Giant Radio Halos from Electron Reacceleration Models

    Full text link
    The most important evidence of non-thermal phenomena in galaxy clusters comes from Giant Radio Halos (GRHs), synchrotron radio sources extended over Mpc scales, detected in a growing number of massive galaxy clusters. A promising possibility to explain these sources is given by "in situ" stochastic reacceleration of relativistic electrons by turbulence generated in the cluster volume during merger events. Cassano & Brunetti (2005) have recently shown that the expected fraction of clusters with GRHs and the increase of such a fraction with cluster mass can be reconciled with present observations provided that a fraction of 20-30 % of the turbulence in clusters is in the form of compressible modes. In this work we extend these calculations by including a scaling of the magnetic field strength with cluster mass. We show that the observed correlations between the synchrotron radio power of a sample of 17 GRHs and the X-ray properties of the hosting clusters are consistent with, and actually predicted by a magnetic field dependence on the virial mass of the form B \propto M^b, with b>0.5 and typical micro Gauss strengths of the average B intensity. The occurrence of GRHs as a function of both cluster mass and redshift is obtained. The most relevant findings are that the predicted luminosity functions of GRHs are peaked around a power P_{1.4 GHz} 10^{24} W/Hz, and severely cut-off at low radio powers due to the decrease of the electron reacceleration in smaller galaxy clusters. We expect a total number of GRHs to be discovered at ~mJy radio fluxes of ~100 at 1.4 GHz. Finally, the occurrence of GRHs and their number counts at 150 MHz are estimated in view of the fortcoming operation of low frequency observatories (LOFAR, LWA) and compared with those at higher radio frequencies.Comment: 21 pages, 17 figures, accepted for publication in MNRA

    An elusive radio halo in the merging cluster Abell 781?

    Full text link
    Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the cluster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.Comment: 5 pages, 4 figures, 1 table - Accepted for publication on Monthly Notices of the Royal Astronomical Society Letter

    Can giant radio halos probe the merging rate of galaxy clusters?

    Get PDF
    Radio and X-ray observations of galaxy clusters probe a direct link between cluster mergers and giant radio halos (RH), suggesting that these sources can be used as probes of the cluster merging rate with cosmic time. In this paper we carry out an explorative study that combines the observed fractions of merging clusters (fm) and RH (fRH) with the merging rate predicted by cosmological simulations and attempt to infer constraints on merger properties of clusters that appear disturbed in X-rays and of clusters with RH. We use morphological parameters to identify merging systems and analyze the currently largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and 0.2<z<0.33, from the Planck SZ cluster catalogue). We found that in this sample fm~62-67% while fRH~44-51%. The comparison of the theoretical f_m with the observed one allows to constrain the combination (xi_m,tau_m), where xi_m and tau_m are the minimum merger mass ratio and the timescale of merger-induced disturbance. Assuming tau_m~ 2-3 Gyr, as constrained by simulations, we find that the observed f_m matches the theoretical one for xi_m~0.1-0.18. This is consistent with optical and near-IR observations of clusters in the sample (xi_m~0.14-0.16). The fact that RH are found only in a fraction of merging clusters may suggest that merger events generating RH are characterized by larger mass ratio; this seems supported by optical/near-IR observations of RH clusters in the sample (xi_min~0.2-0.25). Alternatively, RH may be generated in all mergers but their lifetime is shorter than \tau_m (by ~ fRH/fm). This is an explorative study, however it suggests that follow up studies using the forthcoming radio surveys and adequate numerical simulations have the potential to derive quantitative constraints on the link between cluster merging rate and RH at different cosmic epochs and for different cluster masses.Comment: 10 pages, 3 figures, accepted for publication in A&

    An unlikely radio halo in the low X-ray luminosity galaxy cluster RXC J1514.9-1523

    Full text link
    We report the discovery of a giant radio halo in the galaxy cluster RXC J1514.9-1523 at z=0.22 with a relatively low X-ray luminosity, LX [0.1−2.4 kev]∼7×1044L_{X \, [0.1-2.4 \rm \, kev]} \sim 7 \times 10^{44} erg s−1^{-1}. This faint, diffuse radio source is detected with the Giant Metrewave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. The integrated radio spectrum of the halo is quite steep, with a slope \alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L_X \ltsim 8 \times 10^{44} erg s−1^{-1}. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the recently discovered population of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.Comment: 4 pages, 2 figures - Accepted for publication on A&A Research Note

    A giant radio halo in the massive and merging cluster Abell 1351

    Full text link
    We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A1351 (z=0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology, and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A1351 to be a system undergoing a major merger. The halo is associated with the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high-energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A1351 in the logP1.4GHz_{1.4 GHz} - logLX_{X} plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive (>1015M⊙>10^{15} M_{\odot}) clusters and the presence of giant radio halos.Comment: 4 pages, 3 figures, proof corrections include

    Unveiling radio halos in galaxy clusters in the LOFAR era

    Full text link
    Giant radio halos are mega-parsec scale synchrotron sources detected in a fraction of massive and merging galaxy clusters. Radio halos provide one of the most important pieces of evidence for non-thermal components in large scale structure. Statistics of their properties can be used to discriminate among various models for their origin. Therefore, theoretical predictions of the occurrence of radio halos are important as several new radio telescopes are about to begin to survey the sky at low frequencies with unprecedented sensitivity. In this paper we carry out Monte Carlo simulations to model the formation and evolution of radio halos in a cosmological framework. We extend previous works on the statistical properties of radio halos in the context of the turbulent re-acceleration model. First we compute the fraction of galaxy clusters that show radio halos and derive the luminosity function of radio halos. Then, we derive differential and integrated number count distributions of radio halos at low radio frequencies with the main goal to explore the potential of the upcoming LOFAR surveys. By restricting to the case of clusters at redshifts <0.6, we find that the planned LOFAR all sky survey at 120 MHz is expected to detect about 350 giant radio halos. About half of these halos have spectral indices larger than 1.9 and substantially brighten at lower frequencies. If detected they will allow for a confirmation that turbulence accelerates the emitting particles. We expect that also commissioning surveys, such as MSSS, have the potential to detect about 60 radio halos in clusters of the ROSAT Brightest Cluster Sample and its extension (eBCS). These surveys will allow us to constrain how the rate of formation of radio halos in these clusters depends on cluster mass.Comment: 12 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    GMRT Radio Halo Survey in galaxy clusters at z = 0.2 -- 0.4. II.The eBCS clusters and analysis of the complete sample

    Full text link
    We present the results of the GMRT cluster radio halo survey. The main purposes of our observational project are to measure which fraction of massive galaxy clusters in the redshift range z=0.2--0.4 hosts a radio halo, and to constrain the expectations of the particle re--acceleration model for the origin of the non--thermal radio emission. We selected a complete sample of 50 clusters in the X-ray band from the REFLEX (27) and the eBCS (23) catalogues. In this paper we present Giant Metrewave Radio Telescope (GMRT) observations at 610 MHz for all clusters still lacking high sensitivity radio information, i.e. 16 eBCS and 7 REFLEX clusters, thus completing the radio information for the whole sample. The typical sensitivity in our images is in the range 1σ∼35−100μ\sigma \sim 35-100 \muJy b−1^{-1}. We found a radio halo in A697, a diffuse peripheral source of unclear nature in A781, a core--halo source in Z7160, a candidate radio halo in A1682 and ``suspect'' central emission in Z2661. Including the literature information, a total of 10 clusters in the sample host a radio halo. A very important result of our work is that 25 out of the 34 clusters observed with the GMRT do not host extended central emission at the sensitivity level of our observations, and for 20 of them firm upper limits to the radio power of a giant radio halo were derived. The GMRT Radio Halo Survey shows that radio halos are not common, and our findings on the fraction of giant radio halos in massive clusters are consistent with the statistical expectations based on the re--acceleration model. Our results favour primary to secondary electron models.Comment: A&A in press, 17 pages, 12 figures, 4 tables Version with high quality figures available on web at http://www.ira.inaf.it/~tventuri/pap/Venturi_web.pd

    Cluster mergers and non-thermal phenomena: expectations from a statistical magneto-turbulent model

    Full text link
    The most important evidences for non-thermal phenomena in galaxy clusters comes from the spectacular synchrotron radio emission diffused over Mpc scale observed in a growing number of massive clusters. A promising possibility to explain giant radio halos is given by the presence of relativistic electrons reaccelerated by some kind of turbulence generated in the cluster volume during merger events. With the aim to investigate the connection between thermal and non-thermal properties of the ICM, in this paper we develope a statistical magneto-turbulent model which describes in a self-consistent way the evolution of the thermal ICM and that of the non-thermal emission from clusters. Making use of the extended Press & Schechter formalism, we follow cluster mergers and estimate the injection rate of the fluid turbulence generated during these energetic events. We then calculate the evolution of the spectrum of the relativistic electrons in the ICM during the cluster life by taking into account both the electron-acceleration due to the merger-driven turbulence and the relevant energy losses of the electrons. We end up with a synthetic population of galaxy clusters for which the evolution of the ICM and of the non-thermal spectrum emitted by the accelerated electrons is calculated. The generation of detectable non-thermal radio and hard X-ray emission in the simulated clusters is found to be possible during major merger events for reliable values of the model parameters. In addition the occurrence of radio halos as a function of the mass of the parent clusters is calculated and compared with observations. In this case it is found that the model expectations are in good agreement with observations.Comment: 18 pages, 8 figures. Accepted for publication in MNRA
    • …
    corecore