246 research outputs found

    The internationalisation of SMEs from China:the case of Ningxia Hui autonomous region

    Get PDF

    Is an intermediate state populated on the folding pathway of ubiquitin?

    Get PDF
    AbstractIn the last couple of years, there has been increasing debate as to the presence and role of intermediate states on the folding pathways of several small proteins, including the 76-residue protein ubiquitin. Here, we present detailed kinetic studies to establish whether an intermediate state is ever populated during the folding of this protein. We show that the differences observed in previous studies are attributable to the transient aggregation of the protein during folding. Using a highly soluble construct of ubiquitin, which does not aggregate during folding, we establish the conditions in which an intermediate state is sufficiently stable to be observed by kinetic measurements

    Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings

    Get PDF
    Trichoderma brevicompactum IBT 40841 produces trichodermin, a trichothecene-type toxin that shares most of the steps of its biosynthesis with harzianum A, another trichothecene produced by several Trichoderma species. The first specific step in the trichothecene biosynthesis is carried out by a terpene cylcase, trichodiene synthase, that catalyzes the conversion of farnesyl pyrophosphate to trichodiene and that is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin production, but also in an increase in tyrosol and hydroxytyrosol production, two antioxidant compounds that may play a regulatory role in trichothecene biosynthesis, and also in a higher expression of three trichothecene genes, tri4, tri6 and tri10, and of the erg1 gene, which participates in the synthesis of triterpenes. The effect of tri5 overexpression on tomato seedling disease response was also studied

    Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum

    Get PDF
    Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense responses. In the present work, we have shown that disruption of the T. arundinaceum tri5 gene, which encodes a terpene synthase, stops the production of HA, alters the expression of other tri genes involved in HA biosynthesis, and alters the expression of hmgR, dpp1, erg9, erg1, and erg7, all genes involved in terpene biosynthetic pathways. An increase in the level of ergosterol biosynthesis was also observed in the tri5 disrupted transformant in comparison with the wild type strain. The loss of HA also resulted in a drastic reduction of the biocontrol activity of the transformants against the phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. Finally, the effect of tri5 gene disruption on the regulation and balance of intermediates in terpene biosynthetic pathways, as well as the hypothetical physiological role of trichothecenes, both inter- and intracellularly, on regulation and biocontrol, are discussed

    Hemisynthesis and Absolute Configuration of novel 6-pentyl-2H-pyran- 2-one derivatives from Trichoderma spp

    Get PDF
    A comparative study of the secondary metabolism of two Trichoderma spp. with that of the Thctf1 transcription factor gene null mutant of Trichoderma harzianum 34 was carried out in order to deepen our knowledge of the biosynthetic pathway and mode of action of 6-pentyl-2H-pyran-2-one (1) and its derivatives as biocontrol agents. New isolated metabolites have shed light on the detoxification mechanism of 6-pentyl-pyranone by Trichoderma spp. All new compounds were synthesized and their stereoisomer characterized. The absolute configuration of 6-[(10R,20S)-dihydroxypentyl]-2H-pyran-2-one and 6-((10S,20R)-20-propyloxiran-1-yl)-2H-pyran-2-one was determined by NMR analysis of the corresponding Mosher’s esters

    Uso de hidrolizados de pescado en la acuicultura: una revisión de algunos resultados beneficiosos en dietas acuícolas

    Get PDF
    Las industrias pesqueras y de acuicultura generan, cada año, un conjunto de residuos o desechos que incluyen piel, cabeza, vísceras, recortes y espinazos, representando más del 60% en volumen productivo. Estos residuos tienen altos contenidos de proteínas, y normalmente son procesados en productos de bajo valor comercial, como alimentos para animales, harina de residuos y fertilizantes. En los últimos años, se han venido desarrollando tecnologías para el aprovechamiento de éstos residuos y convertirlos en bioproductos de mayor valor agregado, como son los hidrolizados de proteínas, con interesantes aplicaciones en la alimentación animal. Los hidrolizados proteicos de pescado son productos obtenidos de la degradación enzimática o química de las proteínas de pescado en péptidos más pequeños, aminoácidos libres y nucleótidos, obteniéndose un alto contenido proteico con buen balance de aminoácidos, alta digestibilidad y mejor aprovechamiento de sus nutrientes. La inclusión de éstos hidrolizados en los alimentos acuícolas puede mejorar el crecimiento y la eficiencia alimentaria de los organismos acuáticos en cultivo. Este artículo presenta una revisión sobre investigaciones de la inclusión de hidrolizados proteicos de pescado en dietas experimentales para peces, crustáceos, moluscos y algas, y los efectos en los desempeños productivos, en los últimos veinte años

    Esters of quinoxaline-7-carboxylate-1,4-di-N-oxide as Trichomonas vaginalis triosephosphate isomerase inhibitors

    Get PDF
    Trichomoniasis is a public health problem worldwide. Trichomoniasis treatment consists of the use of nitroimidazole derivatives; however, therapeutic ineffectiveness occurs in 5 to 20 % of the cases. Therefore, it is essential to propose new pharmacological agents against this disease. In this work, esters of quinoxaline-7-carboxylate-1,4-di-N-oxide (EQX-NO) were evaluated in in vitro assays as novel trichomonicidal agents. Additionally, an in vitro enzyme assay and molecular docking analysis against triosephosphate isomerase of Trichomonas vaginalis to confirm their mechanism of action were performed. Ethyl (compound 12) and n-propyl (compound 37) esters of quinoxaline-7-carboxylate-1,4-di-N-oxide derivatives showed trichomonicidal activity comparable to nitazoxanide, whereas five methyl (compounds 5, 15, 19, 20 and 22), four isopropyl (compounds 28, 29, 30 and 34), three ethyl (compound (4, 13 and 23) and one n-propyl (compound 35) ester derivatives displayed activity comparable to albendazole. Compounds 6 and 20 decreased 100 % of the enzyme activity of recombinant protein triosephosphate isomerase

    Identification of polyketide synthase genes required for aspinolide biosynthesis in Trichoderma arundinaceum

    Get PDF
    https://link.springer.com/article/10.1007/s00253-022-12182-9[EN] The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s).SIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Synthesis of Trichodermin Derivatives and Their Antimicrobial and Cytotoxic Activities

    Get PDF
    Trichothecene mycotoxins are recognized as highly bioactive compounds that can be used in the design of new useful bioactive molecules. In Trichoderma brevicompactum, the first specific step in trichothecene biosynthesis is carried out by a terpene cyclase, trichodiene synthase, that catalyzes the conversion of farnesyl diphosphate to trichodiene and is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin, a trichothecene-type toxin, which is a valuable tool in preparing new molecules with a trichothecene skeleton. In this work, we developed the hemisynthesis of trichodermin and trichodermol derivatives in order to evaluate their antimicrobial and cytotoxic activities and to study the chemo-modulation of their bioactivity. Some derivatives with a short chain at the C-4 position displayed selective antimicrobial activity against Candida albicans and they showed MIC values similar to those displayed by trichodermin. It is important to highlight the cytotoxic selectivity observed for compounds 9, 13, and 15, which presented average IC50 values of 2 g/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes)
    corecore