531 research outputs found

    Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax

    Get PDF
    Sialidases and trans-sialidases play important roles in the life cycles of various microorganisms. These enzymes can serve nutritional purposes, act as virulence factors or mediate cellular interactions (cell evasion and invasion). In the case of the protozoan parasite Trypanosoma vivax, trans-sialidase activity has been suggested to be involved in infection-associated anaemia, which is the major pathology in the disease nagana. The physiological role of trypanosomal trans-sialidases in host-parasite interaction as well as their structures remain obscure. Here, the production, purification and crystallization of a recombinant version of T. vivaxtrans-sialidase 1 (rTvTS1) are described. The obtained rTvTS1 crystals diffracted to a resolution of 2.5 angstrom and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 57.3, b = 78.4, c = 209.0 angstrom

    3D Microstructured Carbon Nanotube Electrodes for Trapping and Recording Electrogenic Cells

    Get PDF
    Electrogenic cells such as cardiomyocytes and neurons rely mainly on electrical signals for intercellular communication. Microelectrode arrays (MEAs) have been developed for long-term recording of cell signals and stimulation of electrogenic cells under low-cell-stress conditions, providing new insights in the behavior of electrogenic cells and the operation of the brain. To date, MEAs are relying on flat or needle-shaped electrode surfaces, mainly due to limitations in the lithographic processes. This paper relies on a previously reported elasto-capillary aggregation process to create 3D carbon nanotube (CNT) MEAs. This study shows that CNTs aggregate in well-shaped structures of similar size as cardiomyocytes are particularly interesting for MEA applications. This is because i) CNT microwells of the right diameter preferentially trap individual cardiomyocytes, which facilitates single cell recording without the need for clamping cells or signal deconvolution, and ii) once the cells are trapped inside of the CNT wells, this 3D CNT structure is used as an electrode surrounding the cell, which increases the cell-electrode contact area. As a result, this study finds that the recorded output voltages increase significantly (more than 200%). This fabrication process paves the way for future study of complex interactions between electrogenic cells and 3D recording electrodes.This work was supported by the Research Foundation—Flanders (FWO, Belgium) under Project No. 11S1214N. Michael De Volder was supported by the ERC Starting Grant (337739)—HIENA and the Marie Curie Grant CANA (618250). Davor Copic was supported by the Marie Curie Grant EmuCam (660351)

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models

    What is new in surgical treatment of vesicoureteric reflux?

    Get PDF
    In addition to conventional open surgery and endoscopic techniques, laparoscopic correction of vesicoureteric reflux, sometimes even robot-assisted, is becoming an alternative surgical treatment modality for this condition in a number of centres around the world. At least for a subgroup of patients laparoscopists are trying to develop new techniques in an effort to combine the best of both worlds: the minimal invasiveness of the STING and the same lasting effectiveness as in open surgery. The efficacy and potential advantages or disadvantages of these techniques are still under investigation. The different laparoscopic techniques and available data are presented

    Oto-facial syndrome and esophageal atresia, intellectual disability and zygomatic anomalies: expanding the phenotypes associated with EFTUD2 mutations

    Get PDF
    Background: Mutations in EFTUD2 were proven to cause a very distinct mandibulofacial dysostosis type Guion-Almeida (MFDGA, OMIM #610536). Recently, gross deletions and mutations in EFTUD2 were determined to cause syndromic esophageal atresia (EA), as well. We set forth to find further conditions caused by mutations in the EFTUD2 gene (OMIM *603892). Methods and results: We performed exome sequencing in two familial cases with clinical features overlapping with MFDGA and EA, but which were previously assumed to represent distinct entities, a syndrome with esophageal atresia, hypoplasia of zygomatic complex, microcephaly, cup-shaped ears, congenital heart defect, and intellectual disability in a mother and her two children [AJMG 143A(11):1135-1142, 2007] and a supposedly autosomal recessive oto-facial syndrome with midline malformations in two sisters [AJMG 132(4):398-401, 2005]. While the analysis of our exome data was in progress, a recent publication made EFTUD2 mutations highly likely in these families. This hypothesis could be confirmed with exome as well as with Sanger sequencing. Also, in three further sporadic patients, clinically overlapping to these two families, de novo mutations within EFTUD2 were identified by Sanger sequencing. Our clinical and molecular workup of the patients discloses a broad phenotypic spectrum, and describes for the first time an instance of germline mosaicism for an EFTUD2 mutation. Conclusions: The clinical features of the eight patients described here further broaden the phenotypic spectrum caused by EFTUD2 mutations or deletions. We here show, that it not only includes mandibulofacial dysostosis type Guion-Almeida, which should be reclassified as an acrofacial dysostosis because of thumb anomalies (present in 12/35 or 34% of patients) and syndromic esophageal atresia [JMG 49(12). 737-746, 2012], but also the two new syndromes, namely oto-facial syndrome with midline malformations published by Megarbane et al. [AJMG 132(4): 398-401, 2005] and the syndrome published by Wieczorek et al. [AJMG 143A(11):1135-1142, 2007] The finding of mild phenotypic features in the mother of one family that could have been overlooked and the possibility of germline mosaicism in apparently healthy parents in the other family should be taken into account when counseling such families

    SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PAD in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data indicate that loss-of-function mutation in the gene encoding the facilitative glucose transporter GLUT10 (<it>SLC2A10</it>) causes arterial tortuosity syndrome via upregulation of the TGF-β pathway in the arterial wall, a mechanism possibly causing vascular changes in diabetes.</p> <p>Methods</p> <p>We genotyped 10 single nucleotide polymorphisms and one microsatellite spanning 34 kb across the <it>SLC2A10 </it>gene in a prospective cohort of 372 diabetic patients. Their association with the development of peripheral arterial disease (PAD) in type 2 diabetic patients was analyzed.</p> <p>Results</p> <p>At baseline, several common SNPs of <it>SLC2A10 </it>gene were associated with PAD in type 2 diabetic patients. A common haplotype was associated with higher risk of PAD in type 2 diabetic patients (haplotype frequency: 6.3%, <it>P </it>= 0.03; odds ratio [OR]: 14.5; 95% confidence interval [CI]: 1.3- 160.7) at baseline. Over an average follow-up period of 5.7 years, carriers with the risk-conferring haplotype were more likely to develop PAD (<it>P </it>= 0.007; hazard ratio: 6.78; 95% CI: 1.66- 27.6) than were non-carriers. These associations remained significant after adjustment for other risk factors of PAD.</p> <p>Conclusion</p> <p>Our data demonstrate that genetic polymorphism of the <it>SLC2A10 </it>gene is an independent risk factor for PAD in type 2 diabetes.</p
    corecore