1,416 research outputs found
Probing vortices in 4He nanodroplets
We present static and dynamical properties of linear vortices in 4He droplets
obtained from Density Functional calculations. By comparing the adsorption
properties of different atomic impurities embedded in pure droplets and in
droplets where a quantized vortex has been created, we suggest that Ca atoms
should be the dopant of choice to detect vortices by means of spectroscopic
experiments.Comment: Typeset using Revtex4, 4 pages and 2 Postscript file
A sub-Doppler resolution double resonance molecular beam infrared spectrometer operating at chemically relevant energies (~2 eV)
A molecular beam spectrometer capable of achieving sub-Doppler resolution at 2 eV (~18 000 cm^–1) of vibrational excitation is described and its performance demonstrated using the CH stretch chromophore of HCN. Two high finesse resonant power-buildup cavities are used to excite the molecules using a sequential double resonance technique. A v = 0-->2 transition is first saturated using a 1.5 µm color center laser, whereupon a fraction of the molecules is further excited to the v = 6 level using an amplitude modulated Ti:Al2O3 laser. The energy absorbed by the molecules is detected downstream of both excitation points by a cryogenically cooled bolometer using phase sensitive detection. A resolution of approximately 15 MHz (i.e., three parts in 10^8) is demonstrated by recording a rotational line in the v = 6 manifold of HCN. Scan speeds of up to several cm^–1/h were obtained, with signal-to-noise ratios in excess of 100. The high signal-to-noise ratio and a dynamic range of 6×10^4 means that future experiments to study statistical intramolecular vibrational energy redistribution in small molecules and unimolecular isomerizations can be attempted. We would also like to point out that, with improved metrology in laser wavelengths, this instrument can also be used to provide improved secondary frequency standards based upon the rovibrational spectra of molecules
Dissipation in planar resonant planetary systems
Close-in planetary systems detected by the Kepler mission present an excess
of periods ratio that are just slightly larger than some low order resonant
values. This feature occurs naturally when resonant couples undergo dissipation
that damps the eccentricities. However, the resonant angles appear to librate
at the end of the migration process, which is often believed to be an evidence
that the systems remain in resonance.
Here we provide an analytical model for the dissipation in resonant planetary
systems valid for low eccentricities. We confirm that dissipation accounts for
an excess of pairs that lie just aside from the nominal periods ratios, as
observed by the Kepler mission. In addition, by a global analysis of the phase
space of the problem, we demonstrate that these final pairs are non-resonant.
Indeed, the separatrices that exist in the resonant systems disappear with the
dissipation, and remains only a circulation of the orbits around a single
elliptical fixed point. Furthermore, the apparent libration of the resonant
angles can be explained using the classical secular averaging method. We show
that this artifact is only due to the severe damping of the amplitudes of the
eigenmodes in the secular motion.Comment: 18 pages, 20 figures, accepted to A&
A Comparison between Position-Based and Image-Based Dynamic Visual Servoings in the Control of a Translating Parallel Manipulator
Two different visual servoing controls have been developed to govern a translating parallel manipulator with an eye-in-hand configuration, That is, a position-based and an image-based controller. The robot must be able to reach and grasp a target randomly positioned in the workspace; the control must be adaptive to compensate motions of the target in the 3D space. The trajectory planning strategy ensures the continuity of the velocity vector for both PBVS and IBVS controls, whereas a replanning event is needed. A comparison between the two approaches is given in terms of accuracy, fastness, and stability in relation to the robot peculiar characteristics
Resonate and fire dynamics in Complex Oscillation Based Test of analog filters
Recently, proposals have been made for enhancing the Oscillation Based Test (OBT) methodology by using non-plain oscillation regimes, leading to so called Complex Oscillation Based Test (COBT). Here we focus on a recently illustrated strategy for the testing of analog 2nd order filters, showing that the COBT dynamics is quite similar to that expressed by Resonate & Fire (R+F) neuron models. In this interpretation, the testing approach can be related to firing-rate measures. A brief description is given of the mathematical models necessary to achieve a precise characterization of firing times, showing how it can be used for testing purposes. A practical example with simulation data is also provided. © 2011 IEEE
"Spin-Disentangled" Exact Diagonalization of Repulsive Hubbard Systems: Superconducting Pair Propagation
By a novel exact diagonalization technique we show that bound pairs propagate
between repulsive Hubbard clusters in a superconducting fashion. The size of
the matrices that must be handled depends on the number of fermion
configurations {\em per spin}, which is of the order of the square root of the
overall size of the Hilbert space. We use CuO units connected by weak O-O
links to model interplanar coupling and c-axis superconductivity in Cuprates.
The numerical evidence on CuO and CuO prompts a new
analytic scheme describing the propagation of bound pairs and also the
superconducting flux quantization in a 3-d geometry.Comment: 5 pages, 3 figure
- …