352 research outputs found

    Wall-Modeled Lattice Boltzmann and Navier-Stokes Approaches for Separated Flows

    Get PDF
    Lattice Boltzmann (LB) and hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are applied to NASA's Revolutionary Computational Aerosciences (RCA) standard test cases for separated flows. A detailed comparison between the performance and accuracy of the two emerging numerical methodologies for turbulence resolving simulations, i.e. the LB and hybrid RANS/LES methods will be presented. This contribution addresses the RCA technical challenge to identify and down-select critical turbulence, transition, and numerical method technologies for 40% reduction in predictive error for standard turbulence separated flow test cases. Results for the 2D NASA wall-mounted hump and the axisymmetric transonic bump including time-averaged pressure coefficient, skin friction, and velocity pro les, as well as resolved and modeled Reynolds stresses for both numerical approaches will be presented and differences between LB and hybrid RANS/LES will be discussed

    Monitoring the large-scale magnetic field of AD~Leo with SPIRou, ESPaDOnS and Narval. Toward a magnetic polarity reversal?

    Full text link
    One manifestation of dynamo action on the Sun is the 22-yr magnetic cycle, exhibiting a polarity reversal and a periodic conversion between poloidal and toroidal fields. For M dwarfs, several authors claim evidence of activity cycles from photometry and analyses of spectroscopic indices, but no clear polarity reversal has been identified from spectropolarimetric observations. Our aim is to monitor the evolution of the large-scale field of AD Leo, which has shown hints of a secular evolution from past dedicated spectropolarimetric campaigns. We analysed near-infrared spectropolarimetric observations of the active M dwarf AD Leo taken with SPIRou between 2019 and 2020 and archival optical data collected with ESPaDOnS and Narval between 2006 and 2019. We searched for long-term variability in the longitudinal field, the width of unpolarised Stokes profiles, the unsigned magnetic flux derived from Zeeman broadening, and the geometry of the large-scale magnetic field using both Zeeman-Doppler Imaging and Principal Component Analysis. We found evidence of a long-term evolution of the magnetic field, featuring a decrease in axisymmetry (from 99% to 60%). This is accompanied by a weakening of the longitudinal field (-300 to -50 G) and a correlated increase in the unsigned magnetic flux (2.8 to 3.6 kG). Likewise, the width of the mean profile computed with selected near-infrared lines manifests a long-term evolution corresponding to field strength changes over the full time series, but does not exhibit modulation with the stellar rotation of AD Leo in individual epochs. The large-scale magnetic field of AD Leo manifested first hints of a polarity reversal in late 2020 in the form of a substantially increased dipole obliquity, while the topology remained predominantly poloidal and dipolar. This suggests that low-mass M dwarfs with a dipole-dominated magnetic field can undergo magnetic cycles.Comment: 26 pages, 18 figures, 8 table

    Magnetic fields & rotation periods of M dwarfs from SPIRou spectra

    Full text link
    We present near-infrared spectropolarimetric observations of a sample of 43 weakly- to moderately-active M dwarfs, carried with SPIRou at the Canada-France-Hawaii Telescope in the framework of the SPIRou Legacy Survey from early 2019 to mid 2022. We use the 6700 circularly polarised spectra collected for this sample to investigate the longitudinal magnetic field and its temporal variations for all sample stars, from which we diagnose, through quasi-periodic Gaussian process regression, the periodic modulation and longer-term fluctuations of the longitudinal field. We detect the large-scale field for 40 of our 43 sample stars, and infer a reliable or tentative rotation period for 38 of them, using a Bayesian framework to diagnose the confidence level at which each rotation period is detected. We find rotation periods ranging from 14 to over 60d for the early-M dwarfs, and from 70 to 200d for most mid- and late-M dwarfs (potentially up to 430d for one of them). We also find that the strength of the detected large-scale fields does not decrease with increasing period or Rossby number for the slowly rotating dwarfs of our sample as it does for higher-mass, more active stars, suggesting that these magnetic fields may be generated through a different dynamo regime than those of more rapidly rotating stars. We also show that the large-scale fields of most sample stars evolve on long timescales, with some of them globally switching sign as stars progress on their putative magnetic cycles.Comment: MNRAS, in press (25 pages, 15 figures, 3 tables
    corecore