14,143 research outputs found
Singlet oxygen generator for a solar powered chemically pumped iodine laser
The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising
Coexistence of qubit effects
Two quantum events, represented by positive operators (effects), are coexistent if they can occur as possible outcomes in a single measurement scheme. Equivalently, the corresponding effects are coexistent if and only if they are contained in the ranges of a single (joint) observable. Here we give several equivalent characterizations of coexistent pairs of qubit effects. We also establish the equivalence between our results and those obtained independently by other authors. Our approach makes explicit use of the Minkowski space geometry inherent in the four-dimensional real vector space of selfadjoint operators in a two-dimensional complex Hilbert space
Uncertainty reconciles complementarity with joint measurability
The fundamental principles of complementarity and uncertainty are shown to be
related to the possibility of joint unsharp measurements of pairs of
noncommuting quantum observables. A new joint measurement scheme for
complementary observables is proposed. The measured observables are represented
as positive operator valued measures (POVMs), whose intrinsic fuzziness
parameters are found to satisfy an intriguing pay-off relation reflecting the
complementarity. At the same time, this relation represents an instance of a
Heisenberg uncertainty relation for measurement imprecisions. A
model-independent consideration show that this uncertainty relation is
logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and
uncertainty - entangled in joint path-interference measurements". This new
version focuses on the "measurement uncertainty relation" and its role,
disentangling this issue from the special context of path interference
duality. See also http://www.vjquantuminfo.org (October 2003
M551 metals melting experiment
Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered
The structure of classical extensions of quantum probability theory
On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed
Protecting subspaces by acting on the outside
Many quantum control tasks aim at manipulating the state of a quantum
mechanical system within a finite subspace of states. However, couplings to the
outside are often inevitable. Here we discuss strategies which keep the system
in the controlled subspace by applying strong interactions onto the outside.
This is done by drawing analogies to simple toy models and to the quantum Zeno
effect. Special attention is paid to the constructive use of dissipation in the
protection of subspaces.Comment: 16 pages, 10 figure
Unsharp Quantum Reality
The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way
Entangling two defects via a surrounding crystal
We theoretically show how two impurity defects in a crystalline structure can
be entangled through coupling with the crystal. We demonstrate this with a
harmonic chain of trapped ions in which two ions of a different species are
embedded. Entanglement is found for sufficiently cold chains and for a certain
class of initial, separable states of the defects. It results from the
interplay between localized modes which involve the defects and the interposed
ions, it is independent of the chain size, and decays slowly with the distance
between the impurities. These dynamics can be observed in systems exhibiting
spatial order, viable realizations are optical lattices, optomechanical
systems, or cavity arrays in circuit QED.Comment: 5 pages, 5 figure
Fast quasi-adiabatic dynamics
We work out the theory and applications of a fast quasi-adiabatic approach to
speed up slow adiabatic manipulations of quantum systems by driving a control
parameter as near to the adiabatic limit as possible over the entire protocol
duration. Specifically, we show that the population inversion in a two-level
system, the splitting and cotunneling of two-interacting bosons, and the
stirring of a Tonks-Girardeau gas on a ring to achieve mesoscopic
superpositions of many-body rotating and non-rotating states, can be
significantly speeded up.Comment: 5 pages, 6 figure
- …
