98 research outputs found

    On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses

    Get PDF
    Dramatic advances in supercontinuum generation have been made recently using photonic crystal fibers, but it is quite challenging to obtain an octave-spanning supercontinuum on a chip, partially because of strong dispersion in high-index-contrast nonlinear integrated waveguides. We show by simulation that extremely flat and low dispersion can be achieved in silicon nitride slot waveguides over a wavelength band of 500 nm. Different from previously reported supercontinua that were generated either by higher-order soliton fission in anomalous dispersion regime or by self phase modulation in normal dispersion regime, a two-octave supercontinuum from 630 to 2650 nm (360 THz in total) can be generated by greatly enhancing self-steepening in nonlinear pulse propagation in almost zero dispersion regime, when an optical shock as short as 3 fs is formed, which enables on-chip ultra-wide-band applications

    Mode-locked picosecond pulse generation from an octave-spanning supercontinuum

    Full text link
    We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000 - 2000 nm wavelength range

    Emerging therapies for breast cancer

    Full text link
    corecore