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Abstract

Background: The nature and underlying mechanisms of the observed increased vulnerability to posttraumatic
stress disorder (PTSD) in women are unclear.

Methods: We investigated the genetic overlap of PTSD with anthropometric traits and reproductive behaviors and
functions in women. The analysis was conducted using female-specific summary statistics from large genome-wide
association studies (GWAS) and a cohort of 3577 European American women (966 PTSD cases and 2611 trauma-
exposed controls). We applied a high-resolution polygenic score approach and Mendelian randomization analysis to
investigate genetic correlations and causal relationships.

Results: We observed an inverse association of PTSD with genetically determined anthropometric traits related to body
shape, independent of body mass index (BMI). The top association was related to BMI-adjusted waist circumference
(WCadj; R = –0.079, P < 0.001, Q = 0.011). We estimated a relative decrease of 64.6% (95% confidence interval = 27.5–82.7)
in the risk of PTSD per 1-SD increase in WCadj. MR-Egger regression intercept analysis showed no evidence of pleiotropic
effects in this association (Ppleiotropy = 0.979). We also observed associations of genetically determined WCadj with age at
first sexual intercourse and number of sexual partners (P = 0.013 and P < 0.001, respectively).

Conclusions: There is a putative causal relationship between genetically determined female body shape and PTSD,
which could be mediated by evolutionary mechanisms involved in human sexual behaviors.

Keywords: Trauma, Genetics, Women, Anthropometric traits
Background
Posttraumatic stress disorder (PTSD) is a mental illness
that affects susceptible individuals who have experi-
enced, witnessed, or been confronted with an event
involving actual or threatened dangers [1]. Individuals
affected by PTSD present symptoms that, according to
the DSM-5, include four diagnostic clusters (re-
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experiencing, avoidance, negative cognitions and mood,
and arousal) [2]. At least one in nine American women
meet lifetime diagnostic criteria for PTSD and women’s
risk of PTSD is twice that of men [3]. Among women,
PTSD is also more likely to be chronic and associated
with greater functional impairment and distinct neuro-
biological profiles [4, 5]. Evidence suggests that women
are more vulnerable than men to develop PTSD when
exposed to similar traumas [6].
Women’s higher risk for PTSD likely arises from bio-

logic and social/environmental factors. For example, sex
differences in trauma exposure may partially explain the
differential risk for PTSD. Women are more likely to be
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

https://core.ac.uk/display/192549027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-017-0491-4&domain=pdf
mailto:renato.polimanti@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Polimanti et al. Genome Medicine  (2017) 9:99 Page 2 of 10
exposed to sexual violence, which has a high conditional
risk of PTSD [7]. Alternatively, the pattern of results
from twin studies suggests that PTSD may be more her-
itable in women than in men [8, 9] and results from a
recent genome-wide investigation also demonstrate
higher molecular heritability in women [10]. Sex hor-
mones, particularly estradiol and progesterone, have
been implicated as mediators of this risk, suggesting that
their effects on biological, behavioral, and cognitive
pathways augment the vulnerability to PTSD [11]. A re-
cent epigenome-wide association study supported this
possible mechanism; it reported an estrogen-dependent
association of HDAC4 with fear in female mice and
women with PTSD [12].
Genetic data can be used to investigate this complex

network of multiple factors. Polygenic risk score (PRS)
analyses and Mendelian randomization (MR) studies are
less biased by confounders than observational studies
and can be used to investigate the predisposition to
complex traits, identifying shared molecular pathways,
pleiotropy, and causal relationships [13, 14]. Here, we
used summary statistics from female-specific genome-
wide association studies (GWAS) of traits that may be
related to disease pathogenesis—i.e. anthropometric
characteristics [15], reproductive physiology and behav-
iors [16], and educational attainment [17]—to examine
the mechanisms underlying women’s vulnerability to
PTSD. Although these traits were previously indicated
as related to PTSD in women, testing a wide range of
genetic correlations can provide useful etiological in-
sights and help prioritize likely causal relationships [18].
A greater understanding of the biological and external
social processes involved in PTSD will help to address
the critically important interplay between two important
public health issues: PTSD and women’s health.

Methods
Cohorts from the Psychiatric Genomics Consortium PTSD
Workgroup
The individual data from the subjects included were
made available by the members of the Psychiatric Gen-
omics Consortium PTSD Workgroup. Details regarding
participants, genotyping, quality control, imputation,
and ancestry assignment were reported previously [10].
In the present study, we used data regarding female par-
ticipants from seven cohorts: Collaborative Genetic
Study of Nicotine Dependence [19]; Family Study of Co-
caine Dependence [20]; Yale-Penn [21]; Grady Trauma
Project [22]; Marine Resilience Study [23]; Nurses’
Health Study [24]; and Ohio National Guard [25]. Be-
cause the individuals in the GWAS that were used as
sources for summary statistics for the traits of interest
were of European descent, we restricted our analysis to
women of that population. Quality control criteria for
ancestry assignment and sex check are reported in our
previous publication [10]. We considered imputed geno-
types to maximize a consistent SNP (Single Nucleotide
Polymorphism) panel between the training and testing
sets. Imputed SNPs with high imputation quality (geno-
type call probability ≥ 0.8), minor allele frequency ≥ 1%,
missingness per marker ≤ 5%, missingness per individ-
ual ≤ 5%, and Hardy-Weinberg equilibrium P > 10–4 were
retained. After applying these quality control criteria, we
retained information on 4,875,110 variants in a final
sample of 3577 women (966 PTSD cases and 2611
trauma-exposed controls). To investigate the specificity
of our findings for PTSD in women, we investigated a
sample of 4628 men (501 PTSD cases and 4127 trauma-
exposed controls) from the same cohorts of the Psychi-
atric Genomics Consortium PTSD Workgroup. The
same quality control criteria were applied to the data
from men. Principal component analysis of the final
sample was conducted using PLINK 1.9 [26] after link-
age disequilibrium (LD) pruning (R2 < 0.2).

Polygenic risk score analysis
We conducted cross-phenotype PRS analyses using
PRSice software [27] (available at http://prsice.info/). This
method permits testing whether the polygenic compo-
nents of inheritance have a substantial effect on multiple
complex traits [28]. For polygenic profile scoring, we used
summary statistics generated from female-specific GWAS
of 17 traits (Table 1) conducted by the Genetic Investiga-
tion of ANthropometric Traits (GIANT) Consortium
[29–32], the Reproductive Genetics (Reprogen) Consor-
tium [33, 34], and the Social Science Genetic Association
Consortium (SSGAC) [35, 36]. None of the PGC-PTSD
cohorts was included in these previous GWAS and,
thereby, no large overlap is expected among these sam-
ples. We considered multiple association P value thresh-
olds (PT = 10–8, 10–7, 10–6, 10–5, 10–4, 0.001, 0.05, 0.3, 0.5)
for SNP inclusion, i.e. we conducted a high-resolution
analysis. The PRS were calculated after using P value-
informed clumping with a LD cut-off of R2 = 0.3 within a
500-kb window, and excluding the Major Histocompati-
bility Complex region of the genome because of its com-
plex LD structure. The PRS that were generated were
fitted in regression models with adjustments for the top
ten ancestry principal components to calculate Nagelk-
erke’s R as the figure of merit for prediction ability. We
applied false discovery rate (FDR) multiple testing correc-
tion (Q < 0.05) to correct for the number of PRS and
thresholds tested (a total of 170 tests). A gene ontology
(GO) enrichment analysis was conducted based on the
PRS results: the variants included in the significant PRS
with direction concordant with PRS direction were con-
sidered in the enrichment analysis. Variants were mapped
to the nearest genes and then the gene loci were entered
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Table 1 GWAS summary statistics used for polygenic risk scoring

Consortium Trait Abbreviation Women N Variant N Data link

Genetic Investigation of
ANthropometric Traits (GIANT)

Body mass index BMI 128,698 2,494,584 http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files

BMI (age≤
50 years)

BMI<50 52,270 2,407,668

BMI (age≥
50 years)

BMI>50 86,731 2,407,629

Height Height 64,811 2,748,519

Hip circumference HIP 85,973 2,466,814

HIP adjusted for
BMI

HIPadj 84,787 2,466,814

Waist
circumference

WC 90,543 2,444,344

WC adjusted for
BMI

WCadj 89,759 2,473,027

Waist–hip ratio WHR 85,466 2,466,093

WHR adjusted for
BMI

WHRadj 84,222 2,467,768

WHRadj (age≤
50 years)

WHRadj<50 34,523 2,366,527

WHRadj (age≥
50 years)

WHRadj>50 56,150 2,366,567

Reproductive Genetics
(Reprogen)

Age at menarche Menarche 182,416 2,441,881 http://www.reprogen.org/data_download.html

Age at
menopause

Menopause 69,360 2,418,695

Social Science Genetic
Association Consortium (SSGAC)

Age at first birth AFB 158,856 2,470,136 http://www.thessgac.org/data

Education years EDU 122,427 7,643,300

Number of
children ever born

NEB 222,837 2,471,862
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into the enrichment analysis conducted using the PAN-
THER v11.1 Overrepresentation Test (release 20160715;
Reference List: Homo Sapiens) [37]. FDR correction was
applied to the enrichment results to account for multiple
testing. The GO enrichment results were further investi-
gated using REVIGO [38]. Specifically, GO enrichments
were used to make a graph-based visualization considering
an allowed similarity of 0.7, UniProt as reference database,
and SimRel method as the semantic similarity measure.

Two-sample Mendelian randomization analysis
The two-sample MR analysis was conducted using the R
package MendelianRandomization (available at https://
cran.r-project.org/web/packages/MendelianRandomization
/index.html) and the GWAS summary statistics. This is a
strategy to test cause–effect associations, in which evi-
dence on the associations of genetic variants (i.e. instru-
mental variable) with the risk factor (i.e. exposure) and
with the outcome comes from two sources [39]. We used
SNPs associated with waist circumference adjusted for
body mass index (BMI) (WCadj P < 10-8 N = 31), which
showed the most significant correlation with PTSD in our
PRS analysis (FDR Q = 0.011), as the instrumental variable.
The SNP-exposure and SNP-outcome coefficients (WCadj

and PTSD associations, respectively) were combined using
an inverse-variance-weighted approach to give an overall
estimate of the causal effect. To verify the stability of the
results, we compared the findings obtained from inverse-
variance-weighted analysis to the results of other MR ap-
proaches, including simple median, weighted median, and
MR-Egger regression. Different methods have sensitivities
to different potential issues, accommodate different sce-
narios, and vary in their statistical efficiency. Comparing
the results of different methods permits validation of the
analyses. MR-Egger regression intercept was considered to
test for the presence of pleiotropic effects of the SNPs on
the outcome [40]. Due to the lack of genome-wide signifi-
cant loci for PTSD, it was not possible to apply reverse
MR to test the effect of PTSD-associated alleles on WCadj

to confirm the direction of the causal relationship between
these traits [41]. However, we used a reverse PRS analysis
of PTSD to predict WCadj and other anthropometric traits
based on GWAS summary statistics. This reverse PRS
analysis was conducted using PRSice software [27]. To
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Table 2 Top genetic correlations between PTSD and PRS tested

PRS PT SNP N R P value Q value

WCadj 10–8 31 –0.079 6.77 × 10–5 0.011

WHRadj<50 10–6 19 –0.076 1.25 × 10–4 0.011

WHRadj>50 10–8 19 –0.065 0.001 0.023

AFB 0.3 64,579 –0.064 0.001 0.023

WHR 10–7 32 –0.064 0.001 0.023

WHRadj 10–7 51 –0.059 0.003 0.030

Menarche 10–3 1510 0.049 0.013 0.074

BMI<50 10–7 26 0.048 0.015 0.077

HIP 10–5 94 0.045 0.024 0.108

Height 0.1 25,369 0.042 0.035 0.144

WC 10–8 20 0.034 0.082 0.266

BMI>50 10–5 104 0.033 0.099 0.306

BMI 10–4 316 0.032 0.103 0.312

NEB 10–6 2 –0.029 0.141 0.386

HIPadj 0.05 13,338 0.029 0.147 0.390

EDU 10–8 17 –0.021 0.294 0.641

Menopause 10–5 163 0.018 0.360 0.686
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follow up a possible “evolutionary link” between female
body shape and PTSD, we tested the association of genet-
ically determined WCadj with age at first sexual intercourse
(AFS) and number of sexual partners (NSP). For AFS, we
used female-specific summary statistics from a recent
GWAS, including women of European descent only [42].
This previous GWAS was conducted considering a range
of AFS, which also includes a small fraction of individuals
who had their first sexual intercourse before 12 years of
age. For NSP, we used UK Biobank data on a total of
58,356 unrelated women of European descent. We calcu-
lated the association of the top 31 SNPs associated with
WCadj (P < 10

–8) with NSP using a linear regression model.
Before being entered into the analysis, NSP was adjusted
for age and the top ten ancestry principal components and
then normalized using appropriate Box–Cox power
transformations.

Data availability
Data supporting the findings of this study are available
within the article and its Additional files. GWAS Sum-
mary level data used to calculate PRS in this study were
obtained from links reported in Table 1.

Results
We used summary statistics generated from female-
specific GWAS of 17 traits (Table 1) to yield polygenic
profile scoring and tested the association of the derived
PRS with PTSD considering multiple PT and using sam-
ples from the Psychiatric Genomics Consortium PTSD
Workgroup (966 PTSD cases and 2611 trauma-exposed
controls). Six PRS showed correlations with PTSD that
survived FDR multiple testing correction (Q < 0.05;
Table 2; Additional file 1). Although LD score regression
is designed to analyze large sample sizes [18], using this
method we nevertheless replicated the directions of five
correlations and two of them survived multiple testing
correction (Additional file 2). The strongest PRS result
was observed for WCadj: women with high genetically pre-
dicted WCadj have low PTSD risk (PT: 10–8; R = –0.079, P
< 0.001, Q = 0.011). Additional file 3 shows the distribu-
tion of WCadj PRS in PTSD cases and controls. The same
variants included in the WCadj PRS also drove four of the
other associations observed: waist–hip ratio (WHR, PT =
10–7; R = –0.064, P = 0.001, Q = 0.023); WHR adjusted for
BMI (WHRadj, PT = 10–7; R = –0.059, P = 0.001, Q =
0.030), WHRadj in women aged < 50 years (WHRadj<50,
PT = 10–6; R = –0.076, P = 1.25*10–4, Q = 0.011), and
WHRadj in women aged > 50 years (WHRadj>50, PT = 10–8;
R = –0.065, P = 0.001, Q = 0.023). Additional file 4 reports
the strong correlations of WCadj PRS with these other an-
thropometric traits. The association between WCadj PRS
and PTSD appears to be specific to women; no correlation
was observed in men (Additional file 5).
Among the significant PRS, the finding related to Age at
First Birth (AFB) PRS is the only one that appears to be
independent from the WCadj signal because its top correl-
ation is due to the cumulative effects of a large number of
variants (AFB top-PT = 0.3, SNP N = 64,579) and not to
the effect of a small number of strongly associated loci
(WCadj top-PT = 10–8, N = 31). We observed that women
with a high genetically predicted AFB have low PTSD risk
(R = –0.064, P = 0.001, Q = 0.023). Additional file 6 shows
the distribution of AFB PRS in PTSD cases and controls.
No association between AFB PRS and PTSD was observed
in men (Additional file 7). Since this genetic overlap ap-
pear to be related to the additive effect of a large number
of variants (N = 64,579), we investigated which molecular
mechanisms are shared between PTSD and AFB. The GO
enrichment analysis based on AFB results highlighted sev-
eral potential molecular mechanisms involved (Q < 0.05;
Additional file 8, respectively). Because we observed a
large number of significant GO enrichments (Q < 0.05) re-
lated to the AFB–PTSD result (N = 40), we conducted a
similarity-based network analysis among the significant
GO enrichments. This analysis highlighted a GO cluster
(Additional file 9) related to multiple signaling mecha-
nisms (e.g. calcium-mediated signaling and MAPK
cascade).
To investigate further the WCadj-PTSD genetic correl-

ation, we applied a MR approach to assess the causative
mechanisms of this association. We used an inverse-
variance-weighted method to calculate an overall esti-
mate of the causal effect considering the coefficients re-
lated to the association of these variants with PTSD and
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WCadj (Fig. 1; Additional file 10). This analysis showed a
significant association of effect sizes of WCadj-associated
SNPs with effect sizes estimated in our PTSD sample
(OR = 0.35; 95% confidence interval [CI] = 0.17–0.73; P
= 0.008). This translated to a relative decrease of 64.6%
(95% CI = 27.5–82.7) in the risk of PTSD per 1-SD in-
crease in WCadj. This result was consistent considering
multiple MR approaches (Additional file 11). Further-
more, the consistency between PRS and MR analyses
confirms that there is no sample overlap that is biasing
our results. Indeed, these two approaches are susceptible
to biases from sample overlaps, but the bias would be in
opposite directions: risk of false-positive results in PRS
and risk of false-negative results in two-sample MR [43].
Considering the MR-Egger regression intercept, we also
observe that the markers did not show evidence of pleio-
tropic effects (Ppleiotropy = 0.979), suggesting that the as-
sociation of these variants with PTSD is mediated by
their effect on body shape. To investigate further the po-
tential causal relationship between PTSD and female
body shape, we tested whether the PTSD PRS correlated
with WCadj. A causal relationship between two traits
should show asymmetry in the effect sizes of associated
variants [41]. We observed asymmetry between PTSD
and WCadj: PTSD-associated variants showed no effect
on WCadj (P > 0.10; Additional file 12) but strongly
Fig. 1 SNP-exposure (WCadj associations) and SNP-outcome (PTSD associa
reported for each association. The solid line represents the inverse-variance
predicted BMI (P = 5.68*10–7) and other BMI-related an-
thropometric traits (Additional file 13). These results
support a causal relationship between WCadj and PTSD.
We tested whether genetically determined female body
shape correlated with sexual behaviors in women using
female-specific genetic information regarding AFS and
NSP (Additional file 10). Considering a penalized robust
MR-Egger regression, we observed associations of WCadj

with AFS (Beta = –0.25, SE = 0.10, P = 0.013; Fig. 2) and
NSP (Beta = 0.16, SE = 0.04, P < 0.001; Fig. 2) with sig-
nificant evidence of pleiotropy in both results (Ppleiotropy
= 0.017 and < 0.001, respectively), suggesting that the ef-
fects of these variants on sexual behaviors could be due
to multiple mechanisms.

Discussion
We found associations of the genetic risk for PTSD in
women with genetically determined female body shape
and reproductive behaviors. These findings provide
novel insight into the mechanisms that may underlie the
genetic vulnerability to PTSD in women.
Our strongest result reflects an inverse relationship be-

tween genetically determined female body shape and the
genetic risk for PTSD. We observed that SNPs associated
with anthropometric traits related to body shape independ-
ently from BMI (i.e. WCadj, WHR, WHRadj, WHRadj<50,
tions) coefficients used in the MR analysis. Error bars (95% CIs) are
-weighted estimate



Fig. 2 SNP-exposure (WCadj associations) and SNP-outcome (AFS associations, left; NSP associations, right) coefficients used in the MR analysis.
Error bars (95% CIs) are reported for each association. The solid line represents the MR-Egger estimate
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WHRadj>50) are linked to the risk for PTSD. No analogous
association was present in our male cohort. Human body
shape is the result of strong evolutionary pressures, includ-
ing sexual selection, with evident differences in selection be-
tween women and men [44]. The dissimilarities between
sexes are largely due to adaptation mechanisms related to
female reproductive function [44]. To facilitate childbirth,
the pelvis is proportionately larger in women than in men.
There is also variability in fat accumulation and distribution
that are related to women’s need for energy to be used dur-
ing pregnancy and nursing: women have a higher percent-
age of body fat; men accumulate fat in the abdominal
region, while women accumulate fat in hips, buttocks,
thighs, and the lower abdomen [45]. Consistent with the
presence of different regulatory mechanisms related to hu-
man body shape, GWAS from the GIANT consortium
identified several loci with sex-specific effects and most of
them have larger effects in women than in men [30, 32]. Al-
though these sex differences and their regulatory mecha-
nisms are well-known, to our knowledge no large study has
investigated the role of genetically determined body shape
in women’s mental health. In our study, we observed that a
genetically determined evolution-related body shape (i.e.
low WCadj, WHR, and WHRadj) was associated with in-
creased risk of PTSD. A small study reported an association
between observational (i.e. phenotypically observed) WHR
and PTSD concordant with our finding [46]. Our data are
most consistent with a causal relationship between WCadj

and PTSD in women. Considering MR-Egger regression
intercept, we did not observe a pleiotropic effect between
WCadj and PTSD. Conversely, there was an asymmetry in
the effect sizes of associated variants: WCadj-associated vari-
ants affect the risk of PTSD, but PTSD-associated variants
do not affect female body shape. Previous evolutionary stud-
ies reported that body shape in women is one of the traits
related to reproductive attractiveness that has been selected
during human evolution [47]. We note that female repro-
ductive attractiveness, which is determined by evolutionary
selection pressures, is distinct from socio-cultural norms
about female attractiveness that are known to differ over
time and place [48]. Our data can be interpreted as sup-
porting that specific anthropometric characteristics may be
related to PTSD via their role in increasing the risk of trau-
matic experiences related to undesired sexual behavior.
Further evidence of an apparent causal relationship be-
tween WCadj and experiences related to sexual function is
provided by the analysis of AFS and NSP. Genetically de-
termined WCadj is associated with AFS and NSP; this pro-
vides additional evidence of the relationship between the
female body shape and behaviors related to sexual interac-
tions. As indicated by the significant evidence of pleiotropy,
the relationship between female body shape and sexual be-
havior is likely mediated by multiple factors, including be-
havioral mechanisms and physiological processes related to
reproductive function. Unfortunately, we cannot investi-
gate further the relationship between female body shape
and traumatic specific experiences, such as sexual assault,
because trauma type information is not currently available
in the PGC PTSD dataset. We hope to be able to do it in
the future. In particular, we believe that longitudinal stud-
ies that include detailed life course assessments of trau-
matic experience will be needed to better understand the
role of female body shape in risk of sexual assault or other
traumatic event exposure.
Our investigation also identified an association be-

tween AFB and PTSD: genetically predicted young ma-
ternal AFB is associated with an increase of PTSD risk.
This is consistent with epidemiologic observations of an
inverse association between maternal AFB and psychi-
atric distress: mothers giving birth in their teens have an
increased risk of a lifetime behavior disorder, PTSD, or
an anxiety disorder compared to women who were older
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at first birth [49]. The AFB–PTSD correlation is due to
a genome-wide genetic overlap that includes thousands
of independent variants, which is different from the body
shape result, which was influenced by a small number of
variants. This could indicate that these two traits share
some pathways involved in their predisposition. Our en-
richment analysis identified several molecular processes.
Among them, we observed a large GO cluster of signal-
ing mechanisms that includes several that are known to
be involved in the response to traumatic experience,
such as calcium-mediated signaling and the MAPK cas-
cade [50, 51]. Observational studies have reported that
early trauma exposures are associated with an increased
risk of teen pregnancy. In particular, childhood sexual
abuse is associated with increased risk for subsequent
adolescent pregnancy [52, 53]. In line with this scenario,
we note that the AFB GWAS [35] was conducted with-
out excluding birth events from non-consensual sex. For
instance, although it accounts for a small fraction of the
sample investigated, some of the cohorts included in this
previous analysis also included births during childhood.
Accordingly, a possible explanation of the AFB–PTSD
correlation is that childhood abuse and sexual
victimization can contribute to AFB and PTSD, and
some of the trauma-response mechanisms involved may
be shared among these traits. These mechanisms appear
to be different from those related to the WCadj results.
The relationship between AFB and PTSD seems to be
due to a large genetic overlap (i.e. pleiotropy); WCadj ap-
pears to be involved in a causal mechanism related to
women’s vulnerability to PTSD (i.e. no pleiotropy).
Conclusions
In summary, using a genetic approach, we found two as-
sociations with the risk of PTSD in women related to
body shape and reproductive behaviors. Both mecha-
nisms appear to be female-specific (i.e. there was no
such association in men) and they suggest that sex dif-
ferences in trauma type prevalence and molecular mech-
anisms of trauma response contribute to the greater
vulnerability to PTSD observed in women. Our study
demonstrates how genetic research can successfully con-
tribute to the dissection of biological and non-biological
mechanisms relevant to women’s health.
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