19,649 research outputs found

    A binary signature in the non-thermal radio-emitter Cyg OB2 #9

    Full text link
    Aims: Non-thermal radio emission associated with massive stars is believed to arise from a wind-wind collision in a binary system. However, the evidence of binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For several years, we have been monitoring this heavily-reddened star from various observatories. This campaign allowed us to probe variations both on short and long timescales and constitutes the first in-depth study of the visible spectrum of this object. Results: Our observations provide the very first direct evidence of a companion in Cyg OB2 #9, confirming the theoretical wind-wind collision scenario. These data suggest a highly eccentric orbit with a period of a few years, compatible with the 2yr-timescale measured in the radio range. In addition, the signature of the wind-wind collision is very likely reflected in the behaviour of some emission lines.Comment: accepted by A&A, 4 p, 3figure

    INTEGRAL-ISGRI observations of the CygOB2 region: earching for hard X-ray point sources in a region containing several non-thermal emitting massive stars

    Get PDF
    Aims: We analyze INTEGRAL-ISGRI data in order to probe the hard X-ray emission (above 20 keV) from point sources in the Cyg OB2 region and to investigate the putative non-thermal high-energy emission from early-type stars (Wolf-Rayet and O-type stars). Among the targets located in the field of view, we focus on the still unidentified EGRET source 3EG 2033+4118 that may be related to massive stars known to produce non-thermal emission in the radio domain, and on the wide colliding-wind binary WR 140. Methods: Using a large set of data obtained with the IBIS-ISGRI imager onboard INTEGRAL, we run the OSA software package in order to find point sources in the fully coded field of view of the instrument. Results: Our data do not allow the detection of a lower-energy counterpart of 3EG J2033+4118 nor of any other new point sources in the field of view, and we derive upper limits on the high-energy flux for a few targets: 3EG J2033+4118, TeV J2032+4130, WR140, WR146 and WR147. The results are discussed in the context of the multiwavelength investigation of these objects. Conclusions: The upper limits derived are valuable constraints for models aimed at understanding the acceleration of particles in non-thermal emitting massive stars, and of the still unidentified very-high gamma-ray source TeV J2032+4130.Comment: 6 page, 2 figures including one figure in GIF format, accepted for publication by A&

    Spectroscopic study of the O-type runaway supergiant HD 195592

    Full text link
    The scope of this paper is to perform a detailed spectroscopic study of the northern O-type supergiant HD 195592. We use a large sample of high quality spectra in order to investigate its multiplicity, and to probe the line profile variability. Our analysis reveals a clear spectroscopic binary signature in the profile of the He {\sc i} λ\lambda 6678 line, pointing to a probable O + B system. We report on low amplitude radial velocity variations in every strong absorption line in the blue spectrum of HD 195592. These variations are ruled by two time-scales respectively of 5.063 and about 20 days. The former is firmly established, whilst the latter is poorly constrained. We report also on a very significant line profile variability of the H β\beta line, with time scales strongly related to those of the radial velocities. Our results provide significant evidence that HD 195592 is a binary system, with a period that might be the variability time-scale of about 5 days. The second time scale may be the signature of an additional star moving along a wider orbit provided its mass is low enough, even though direct evidence for the presence of a third star is still lacking. Alternatively, the second time-scale may be the signature of a variability intrinsic to the stellar wind of the primary, potentially related to the stellar rotation.Comment: 9 pages, 5 postscript figures, accepted for publication in New Astronom

    Search for magnetic fields in particle-accelerating colliding-wind binaries

    Full text link
    Some colliding-wind massive binaries, called particle-accelerating colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is assumed to be generated by a stellar magnetic field. However, no measurement of magnetic fields in these stars has ever been performed. We aim at quantifying the possible stellar magnetic fields present in PACWB to provide constraints for models. We gathered 21 high-resolution spectropolarimetric observations of 9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed these observations with the Least Squares Deconvolution method. We separated the binary spectral components when possible. No magnetic signature is detected in any of the 9 PACWB stars and all longitudinal field measurements are compatible with 0 G. We derived the upper field strength of a possible field that could have remained hidden in the noise of the data. While the data are not very constraining for some stars, for several stars we could derive an upper limit of the polar field strength of the order of 200 G. We can therefore exclude the presence of strong or moderate stellar magnetic fields in PACWB, typical of the ones present in magnetic massive stars. Weak magnetic fields could however be present in these objects. These observational results provide the first quantitative constraints for future models of PACWB.Comment: Accepted in A&

    The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems

    Get PDF
    We present a spectroscopic analysis of four massive binary systems that are known or are good candidates to display the Struve-Sahade effect (defined as the apparent strengthening of the secondary spectrum of the binary when the star is approaching, and the corresponding weakening of the lines when it is receding). We use high resolution optical spectra to determine new orbital solutions and spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge of the fundamental parameters of the considered systems is necessary to examine the Struve-Sahade effect. We then study equivalent width variations in the lines of both components of these binaries during their orbital cycle. In the case of these four systems, variations appear in the equivalent widths of some lines during the orbital cycle, but the definition given above can any longer be valid, since it is now clear that the effect modifies the primary spectrum as much as the secondary spectrum. Furthermore, the lines affected, and the way in which they are affected, depend on the considered system. For at least two of them (HD 100213 and HD 159176) these variations probably reflect the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&

    A spectroscopic investigation of the O-type star population in four Cygnus OB associations. II. Determination of the fundamental parameters

    Full text link
    Aims. Having established the binary status of nineteen O-type stars located in four Cygnus OB associations, we now determine their fundamental parameters to constrain their properties and their evolutionary status. We also investigate their surface nitrogen abundances, which we compare with other results from the literature obtained for galactic O-type stars. Methods. Using optical spectra collected for each object in our sample and some UV data from the archives, we apply the CMFGEN atmosphere code to determine their main properties. For the binary systems, we have disentangled the components to obtain their individual spectra and investigate them as if they were single stars. Results. We find that the distances of several presumably single O-type stars seem poorly constrained because their luminosities are not in agreement with the "standard" luminosities of stars with similar spectral types. The ages of these O-type stars are all less than 7 Myrs. Therefore, the ages of these stars agree with those, quoted in the literature, of the four associations, except for CygOB8 for which the stars seem older than the association itself. However, we point out that the distance of certain stars is debatable relative to values found in the literature. The N content of these stars put in perspective with N contents of several other galactic O-type stars seems to draw the same five groups as found in the "Hunter" diagram for the O and B-type stars in the LMC even though their locations are obviously different. We determine mass-loss rates for several objects from the Halpha line and UV spectra. Finally, we confirm the "mass discrepancy" especially for O stars with masses smaller than 30 Msun. .Comment: 11 pages, and 26 pages of Appendix. A&A in pres

    Resonant enhancements of high-order harmonic generation

    Get PDF
    Solving the one-dimensional time-dependent Schr\"odinger equation for simple model potentials, we investigate resonance-enhanced high-order harmonic generation, with emphasis on the physical mechanism of the enhancement. By truncating a long-range potential, we investigate the significance of the long-range tail, the Rydberg series, and the existence of highly excited states for the enhancements in question. We conclude that the channel closings typical of a short-range or zero-range potential are capable of generating essentially the same effects.Comment: 7 pages revtex, 4 figures (ps files

    The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X

    Get PDF
    An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to produce a high energy spectrum, in addition to the strong thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal observatory to investigate the hard X-ray spectrum (above 10 keV) of these systems, i.e. where it is no longer dominated by the thermal emission. Such observations are strongly needed to constrain the models aimed at understanding the physics of particle acceleration in CWB. Such systems are important laboratories for investigating the underlying physics of particle acceleration at high Mach number shocks, and probe a different region of parameter space than studies of supernova remnants.Comment: 2 pages, 2 figures, to appear in the proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", held in Bologna, Italy (14-16 May 2007

    Evidence for a physically bound third component in HD 150136

    Get PDF
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    Quantum Gravity Corrections for Schwarzschild Black Holes

    Get PDF
    We consider the Matrix theory proposal describing eleven-dimensional Schwarzschild black holes. We argue that the Newtonian potential between two black holes receives a genuine long range quantum gravity correction, which is finite and can be computed from the supergravity point of view. The result agrees with Matrix theory up to a numerical factor which we have not computed.Comment: 14 pages, Tex, no figure
    • …
    corecore