39 research outputs found

    Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters

    Get PDF
    A rational, theoretically proved and empirically verified control system is a condition for optimal management of the drilling process in compliance with the criteria for minimizing the cost of time and material resources. A new generation of rock-cutting tools using PDC cutters (polycrystalline diamante cutters), which are extremely effective when drilling wells for various purposes in medium-hard rocks, dictates the need to develop methods and criteria for optimal control of the drilling process using this tool. The paper presents an analysis of the force interaction between rock-cutting elements, face rock, and drilling mud saturated with slam, highlights the influencing factors and provides dependencies for determining the parameters of rock failure. Empirical verification of the theoretical propositions was carried out based on the data analysis from experimental bit drilling of marble with PDC cutters with a diameter of 76.2 mm, processed using the method of full factor experiment to obtain mathematical models of factors and their graphical interpretation. The method of controlling the drilling process based on the optimal ratio of the tool rotation frequency, axial weight and deepening per one turnover is considered, which allows determining the rock failure mode at the well bottom by indirect signs and choose the optimal values of the drilling mode parameters that correspond to the most optimal conditions in terms of achieving the maximum mechanical drilling speed in conjunction with the rational mode of rock-cutting tool operation. A scheme is presented that contains possible variants of the bit run mode and ways to recognize them by the ratio of the deepening per turnover and the rotation frequency of the rock-cutting tool

    Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2

    Get PDF
    Using cross-linking coupled to matrix-assisted laser desorption/ionization mass spectrometry and CLIP-Seq sequencing, we determined the peptide and oligonucleotide sequences at the interfaces between the capsid proteins and the genomic RNA of bacteriophage MS2. The results suggest that the same coat protein (CP)-RNA and maturation protein (MP)-RNA interfaces are used in every viral particle. The portions of the viral RNA in contact with CP subunits span the genome, consistent with a large number of discrete and similar contacts within each particle. Many of these sites match previous predictions of the locations of multiple, dispersed and degenerate RNA sites with cognate CP affinity termed packaging signals (PSs). Chemical RNA footprinting was used to compare the secondary structures of protein-free genomic fragments and the RNA in the virion. Some PSs are partially present in protein-free RNA but others would need to refold from their dominant solution conformations to form the contacts identified in the virion. The RNA-binding peptides within the MP map to two sections of the N-terminal half of the protein. Comparison of MP sequences from related phages suggests a similar arrangement of RNA-binding sites, although these N-terminal regions have only limited sequence conservation. In contrast, the sequences of the C-termini are highly conserved, consistent with them encompassing pilin-binding domains required for initial contact with host cells. These results provide independent and unambiguous support for the assembly of MS2 virions via a PS-mediated mechanism involving a series of induced-fit viral protein interactions with RNA

    Formation of gradient microstructure and mechanical properties of hot-pressed W-20 wt% Cu composites after sliding friction severe deformation

    Get PDF
    W-based alloys are currently considered promising candidates for high heat flux components in future fusion reactors. In this paper, hot pressed W-20 wt%Cu composites were treated at room temperature using a sliding friction severe deformation (SFD) process, with a moving speed of 0.2 m/s and an applied load of 500 N. Microstructural evolution of composites after the SFD treatment was evaluated and compared with that of the untreated composites. Results showed that there was a gradient structure generated and an obvious refinement in tungsten particles size in the surface layer after the SFD process. The average particle size of tungsten in the SFD treated composites was 2.60 μm, whereas it was 4.5 μm for tungsten in the untreated composites. Fracture surfaces of the composites indicated that the SFD treatment destroyed the W skeleton and changed fracture mode from predominant inter-granular one to trans-granular one due to the decrease in contact area of W-W inter-particles. Yield strength and ultimate tensile strength of composites after the SFD treatment were 308 MPa and 553 MPa, respectively. The treated composites exhibited micro-hardness values with an average reading of about 308 HV. Analysis of the facture microstructures clearly suggested that the tungsten particles in the treated composites are consisted of dislocations and boundaries as well as dislocation tangles. The electrical conductivity of the composites was decreased from 33 IACS% to 28.5 IACS% after the SFD treatment, mainly due to loss or squeezing of copper into the inner surface

    Self-learning scene-specific pedestrian detectors using a progressive latent model

    No full text
    Abstract In this paper, a self-learning approach is proposed towards solving scene-specific pedestrian detection problem without any human annotation involved. The self-learning approach is deployed as progressive steps of object discovery, object enforcement, and label propagation. In the learning procedure, object locations in each frame are treated as latent variables that are solved with a progressive latent model (PLM). Compared with conventional latent models, the proposed PLM incorporates a spatial regularization term to reduce ambiguities in object proposals and to enforce object localization, and also a graph-based label propagation to discover harder instances in adjacent frames. With the difference of convex (DC) objective functions, PLM can be efficiently optimized with a concave-convex programming and thus guaranteeing the stability of self-learning. Extensive experiments demonstrate that even without annotation the proposed self-learning approach outperforms weakly supervised learning approaches, while achieving comparable performance with transfer learning and fully supervised approaches
    corecore