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Abstract:  

W-based alloys are currently considered promising candidates for high heat flux 

components in future fusion reactors. In this paper, hot pressed W-20wt.%Cu 

composites were treated at room temperature using a sliding friction severe 

deformation (SFD) process, with a moving speed of 0.2 m/s and an applied load of 

500 N. Microstructural evolution of composites after the SFD treatment was evaluated 

and compared with that of the untreated composites. Results showed that there was a 

gradient structure generated and an obvious refinement in tungsten particles size in 
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the surface layer after the SFD process. The average particle size of tungsten in the 

SFD treated composites was 2.60 µm, whereas it was 4.5 µm for tungsten in the 

untreated composites. Fracture surfaces of the composites indicated that the SFD 

treatment destroyed the W skeleton and changed fracture mode from predominant 

inter-granular one to trans-granular one due to the decrease in contact area of W-W 

inter-particles. Yield strength and ultimate tensile strength of composites after the 

SFD treatment were 308 MPa and 553 MPa, respectively. The treated composites 

exhibited micro-hardness values with an average reading of about 308 HV. Analysis 

of the facture microstructures clearly suggested that the tungsten particles in the 

treated composites are consisted of dislocations and boundaries as well as dislocation 

tangles. The electrical conductivity of the composites was decreased from 33 IACS% 

to 28.5 IACS% after the SFD treatment, mainly due to loss or squeezing of copper 

into the inner surface.  

 

Keywords: W-Cu composites; Sliding friction treatment; Microstructure; Mechanical 

properties 

 

1. Introduction 

Tungsten-copper (W-Cu), a typical composite consisting of W particles 

embedded inside Cu matrix, has received much attention for the manufacture of 

electrical contact parts, heat sinks in high-power microelectronic devices, 

arcing-resistant electrodes and deviator plates for fusion reactors in armour materials, 
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owing to their excellent properties including low coefficient of thermal expansion, 

high hardness, high melting point of W and excellent thermal and electrical 

conductivity of Cu [1-3]. However, the W-Cu composites have potential drawbacks 

such as poor toughness, which restrict their wide applications in many stringent 

service conditions in industry applications [4-5]. This is mainly because W and Cu 

have no mutual solubility over the whole range of composition range in W-Cu 

composites at various temperatures, therefore, it is critical to explore new synthesis 

technologies to improve their mechanical properties and thus expand their wide-range 

applications. 

Over the past decades, a considerable amount of work has been focused on the 

preparation and enhancement of physical properties of W-Cu composites [6-10]. 

However, few studies have been devoted to the detailed microstructural evolution and 

mechanical properties of W-Cu composites, especially after surface treatments such as 

severe plastic deformation (SPD). A number of researchers have investigated the 

deformation behavior and properties of Al alloys, Mg alloys, Ti alloys and pure metals 

(Ta and Cu) processed by the SPD processes [11-16], including equal channel angular 

extrusion/pressing (ECAE/ECAP), high pressure torsion (HPT), surface mechanical 

attrition treatment , ultrasonic hot peening, ball burnishing, as well as sliding friction 

treatment deformation (SFD). Among these approaches, SFD is a surface 

strengthening technology with a great potential for industrial applications. It can be 

used to fabricate a nanocrystalline (nc) or ultrafine grain layer on the surface of 

treated bulk metals. Along with other surface treatment technologies, SFD is now 
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widely used in preparation of many types of gradient nanostructured materials. For 

example, Zhang reported an nc-structured layer with grains of 7 nm on the surface of 

pure Ta using the SFD [17]. However, the grain coarsening was found in nc-Cu due to 

the high stress, high strain and large amplitude occurred in the SFD process of Cu 

[17]. Deng et al. reported that the micro-hardness values of the nanoscale lamellae 

and fine deformed grains of pure Cu were ~1.85 GPa and 1.2~1.5 GPa, respectively, 

after rapid platen friction sliding deformation [18]. Sabirov et al investigated the 

effect of SPD process on coarse-grained W-Cu composites. They found that the W-Cu 

composites were thermally stable dual-phase composites, where the W exhibited a 

strong temperature dependent yield strength and was much more brittle than Cu and 

HPT, thus causing a strong refinement of W particles [19]. Also, W-Cu composites 

with good electrical conductivity (46.8% IACS) and high micro-hardness (450 HV) 

were achieved by multiple treatments at high temperature and high pressure 

deformation processes [20]. Recently, Dong et al succeeded in fabrication of W-Cu 

composites using an ECAP, and achieved an effective refinement of W grains after the 

ECAP process [21]. However, so far, there is no report on SFD processes of WCu 

composites, and it would be of great scientific interesting to study gradient 

microstructure formation and mechanical property enhancement of WCu composites 

after the SFD treatment.   

In this paper, SFD technology was proposed to conduct on W-Cu composites. 

Microstructure evolution and properties of the W-Cu composites after SFD treatment 

was investigated. The deformation mechanism of the SFD-treated (hereafter we use 
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the abbreviation of SFDed) W-Cu composites was explored and discussed. The study 

of this work will expand wide range applications of the W-Cu composites through 

microstructural changes and improvement in the mechanical properties of the 

composites. 

 

2. Experimental  

2.1 Raw materials 

The materials under investigation in this work were W80-Cu20 composites (i.e. 

80wt.% W and 20wt.% Cu) fabricated using hot pressing sintering. The W powder 

(~6µm, ＞99.99%wt.%) and Cu powder (~48µm, ＞99.99%wt.%) were blended in a 

V-type mixing machine for 8h, followed by hot pressing sintering. The detailed 

processing parameters of hot pressing sintering are listed in Table 1. Samples with a 

size of 200×100×5 (mm×mm×mm) were obtained using a wire-cutting machine as 

shown in Fig. 1(a). Fig. 1(b) shows a scanning electron microscope (SEM) 

cross-section image of the polished W80-Cu20 composites. The dark and bright 

regions are Cu and W phases, respectively. 

Table 1 Processing parameters of fabrication of W80-Cu20 composites by hot pressing sintering. 

Fig. 1 (a) Photo showing the sample dimensions; (b) SEM image of cross-section of polished 

W80-Cu20 composites. 

2.2 SFD treatment  

The experiments were conducted on a specially designed set-up with a 

ball-on-disc contact configuration as shown in Fig. 2(a). A schematic illustration of 

the SFD process is presented in Figs. 2(b) ~ (e).  
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(1) Firstly, a spherical WC-Co ball with a diameter of 10 mm was sliding under a 

normal load against a metal sheet along the X direction from left to right at a velocity 

of v1 and a preset amplitude of d1 (Fig. 1(b)). In this step, a wide furrow parallel to the 

sliding direction was induced in the wake of the sliding event.  

(2) Secondly, the metal plate was shifted in the Y direction for a distance of d2 at a 

velocity of v2 followed by sliding along the X direction from right to left with a 

distance of d1 (Fig. 1(c)). When the ball slided back to the left, a shallow plow mark 

was generated because of the small value of d2 compared with the width of the 

primary furrow (Fig. 1(d)).  

(3) Repeated friction was conducted, and as a consequence, the sample surface 

showed roughened surfaces and a plastically deformed layer on the surface of W-Cu 

composites (Fig. 1(e)).  

 

In order to effectively refine the grains in the surface layer, the SFD process was 

repeated 20 times with the same processing parameters as follows: load F (500 N), 

moving speed v1 (0.2 m/s), v2 (0.005 m/s) and feeding step distance d (0.1mm).  

 

Fig. 2 (a) The designed set-up for SFD process; (b) ~ (e) an illustration of the step-by-step SFD 

processes. 

 

2.3 Materials characterization    

The microstructure and particle size of untreated and SFDed W80-Cu20 composites 
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were characterized using a JEOL-JSM6460 SEM equipped with energy dispersive 

spectroscopy (EDS), as well as a transmission electron microscope (TEM) 

observations were carried out using a FEI Tecani F30. For the TEM sample 

preparation, about 0.5 mm thin foil of the treated surface layer was obtained via using 

wire-cutting machine, mechanically ground to a thickness of 40~50 μm used 

metallographic sand paper, and then a thickness of 15~20 μm was performed by 

dimpling grinder. The final thinning was carried out using a Gatan PIPS 691 ion 

milling system with a time of 12 h and argon ions were used in the ion etching with 

the accelerating voltage in the range of 2.5-5 keV and with the incident angle in the 

range of 4~10° at room temperature. About two hundred particles within the same 

size scope of SEM images are randomly selected to statistically analyze the average 

size of W particles using Nano Measurer software. X-ray diffraction (XRD) using a 

Dmax-2500 diffractometer with Cu Kα (λ=0.15418nm) radiation was performed on 

the SFDed composites to determine the crystalline phases. The diffraction profiles 

were measured in the 2θ angle range of 10-90
o
 with a scan step of 0.02

o
. Textures are 

prospected by X-ray diffraction on a Xpert Pro MRD with a Cu Ka radiation. The 

measurement was done along cross section direction of the samples. The Jtex V.2.20 

software was employed for plotting pole and inverse pole figures and analyzing the 

texture data. Fig. 3 shows the observing location of the texture testing. 

The densities of the specimen were measured by the Archimedes displacement 

method. The electrical conductivity was determined using an Eddy Current 

Conductivity Meter (D60K). The micro-hardness of the surface was measured using a 
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Vicker’s hardness tester (MVS-1000JMT2) under a load of 50 g and a dwell time of 

10 s. The average of 10 indents was used to ensure acquisition of a reasonable value 

of microhardness. The Instron 5848 Microtester was used to test the tensile properties 

and fracture behavior of W80-Cu20 composites at room temperature with a strain rate 

of 1×10
-3 

s
-1

. Three samples were tested for the tensile strength tests to acquire the 

average value. The tensile fracture surfaces of the W80-Cu20 composites were 

investigated using the SEM to determine the failure mechanism. 

 

3. Results and discussion 

Fig. 4 shows the microstructures of the cross-sectioned surface of untreated and 

SFDed W80-Cu20 composites. In Fig. 4(a), the Cu phase is uniformly distributed 

throughout the composites, in which the average particle size of W is about 4.5 µm, 

which can be observed from the statistical particle size distribution of W as shown in 

Fig. 4(c). After the SFD treatment, the W particles exhibit a significant reduction in 

particle size with an average value of 2.60 µm, as well as severe and inhomogeneous 

deformation (Fig. 4(d) and Fig. 4(b)). It can be concluded that W particles have been 

refined after the SFD process. Similar phenomenon has been observed in Mg alloys 

by Huo et al [22], who reported that an average grain size of 70 nm on the topmost 

surface was obtained after 100 cycle repeated sliding friction treatment.  

On the other hand, EDS mapping results shown in Fig. 4(e) and 4(f) demonstrate 

the inhomogeneous deformation of W skeleton during the SFD. As indicated, region A 

in Fig. 4(f) contains lower Cu content and refined W particles due to significant 
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deformation. Inversely, region B in Fig. 4(f) contains higher Cu content and exhibits 

similar microstructural features to those in the untreated composites as shown in Fig. 

3(e).  

Fig. 4 The cross-section SEM images of (a) W80-Cu20 composites and (b) SFDed composites 

after 20 cycle sliding treatment, (c) and (d) statistical distribution of the W grain size of W 

particles in Fig. (a) and (b), respectively, (e) and (f) elemental mapping analysis results from 

W80-Cu20 composites and SFDed composites after 20 cycle sliding treatment, respectively. 

 

SEM micrographs of the longitudinal cross-section of W80-Cu20 composites 

before and after SFD process are illustrated in Fig. 5. A plastic deformed surface layer 

with a thickness of about 50 μm was created after SFD process, as observed in Fig. 

5(b). By comparing Figs. 5(a) and Fig. 5(b), the W particles are obviously refined 

under the repeated frictional sliding. Figs. 5(c) and (d) are higher magnification SEM 

images of the SFDed sample showing the microstructure at the edge and in the center 

area of the sample, respectively. In Fig. 5(c), the W particles are elongated in parallel 

to sliding moving direction.  

According to the EDS results of the wear debris (shown in the top right corner in 

Fig. 5(c)), the Cu content in Fig. 5(c) is lower than that in Fig. 5(a) owing to the loss 

or squeezing of Cu from the composites during the SFD treatment. On the other hand, 

the W particles obviously exhibit a fragmentation phenomenon and are slightly 

elongated as shown in Fig. 5(d). Also, EDS mapping in Figs. 5(e) and 5(f) illustrates 

that the SFD process results in the development of a gradient surface microstructure 
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due to the application of sliding load. As can be seen from these figures, the Cu phase 

at the near-surface area was reduced due to the loss or squeezing of Cu during SFD 

treatment. However, it is gradually increased with an increase in the distance from the 

surface, and ultimately reached to the same composition as that in the untreated 

composites. Formation of a gradient microstructure generated in pure copper by 

platen friction sliding deformation has also been reported by Deng et al [23] and 

Figueroa et al [24]. 

The evolution of gradient microstructure of W-Cu composite during SFD 

treatment can be described by two main steps: (1) refinement of W particles and 

rotation towards the sliding direction, together with decrease of spacings between W 

particles in deformed skeleton; and (2) loss or squeezing of Cu at near-surface areas 

during SFD process. As a result, although such fine scale structures with lower Cu 

content can be developed at the top surface, the center of the deformed layer does not 

show apparent microstructural changes.  

Fig. 5 The longitudinal cross-sectioned SEM images of W80-Cu20 composites: (a) original 

W80Cu20 composites; (b) SFDed composite after 20 cycles; (c) in the edge area; (d) in the center 

area. (e) and (f) elemental mapping analysis results from W80-Cu20 composites and SFDed 

composites after 20 cycle sliding treatments, respectively. 

 

XRD patterns of the untreated and SFDed W80-Cu20 composites are shown in 

Fig. 6, which reveals that no phase transformation occurred in the W80-Cu20 

composites after SFD process. By Comparing Fig. 6(a) and Fig. 6(b), a broadening of 

http://orbit.dtu.dk/en/publications/a-gradient-nanostructure-generated-in-pure-copper-by-platen-friction-sliding-deformation(f4560a83-a0ba-4bb3-aad5-9d26c0ca6cff).html
http://orbit.dtu.dk/en/publications/a-gradient-nanostructure-generated-in-pure-copper-by-platen-friction-sliding-deformation(f4560a83-a0ba-4bb3-aad5-9d26c0ca6cff).html
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the W phase peaks was observed, which could be induced by grain refinement and 

lattice strain accumulation.  

Fig. 6 XRD patterns of the W80-Cu20 composites; (a) original composites and (b) SFDed 

composites after 20 cycle treatments. 

In order study the texture changed before and after SFD treatment, the XRD was 

used to characterize the texture of the surface of W particles and the results are shown 

in Fig. 7. The origional W-Cu composites have a low texture strength, as observed in 

Fig. 7(a). However, in Fig. 7(b), the SFD treament on the surface of the composites 

have changed the intensity of texture. The stable texture components was further 

informed, including Brass type texture {110} <112>, Copper type texture{211} <111> 

and rotating cubic texture {200} <011>. The changes in basal texture intensities 

witness the increased strength of composite.  

Fig. 7 Pole figure (110), (200) and (211) of orgional W80-Cu20 composites (a) and SFDed 

W80-Cu20 composites (b) taken along cross section direction of the samples. 

The measured relative density, electrical conductivity and micro-hardness of the 

W80-Cu20 composites before and after SFD treatment are presented in Table 2. The 

electrical conductivity of the sample is decreased from 33 IACS% to 28.5 IACS% 

after SFD treatment, because of the lower Cu content in the SFDed composites as 

well as the refinement of W particle. However, the relative density of the SFDed 

composites has a value of 98.5% which is higher than that of untreated composites 

due to the elongation and fragmentation of W particle. Also, a significant increase in 

the hardness of W80-Cu20 composites was obtained after SFD treatment. Its 

micro-hardness is 308 HV, which is higher than that of the untreated composites 

(Table 2).  
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Table 2 The electrical conductivity, relative density and micro-hardness of the W80-Cu20 

composites in the work. 

Fig. 8 shows TEM images of e microstructure and deformation behavior of 

W80-Cu20 composites after the SFD process. Figs. 8(a) ~ (c) indicate that the grains 

of the composites which are composed of W phases embedded inside a Cu matrix. 

The Cu phase is a typical FCC crystal structure (Fig. 8(b)) and W phase is a typical 

BCC crystal structure (Fig. 8(c)), based on the SAED patterns. Fig. 8(d) presents a 

TEM image of the W phase in the SFDed composite and the inset is the corresponding 

SADE pattern. It can be observed that dislocations and grain boundaries are clearly 

existed in the deformed W particles, and dislocation tangles are also found in Fig. 8(d). 

It should be noted that there are some deformation twins marked by the yellow circles 

observed in the deformed composites, as determined by the EDS (In Fig. 8(f)). From 

the high-resolution image shown in Figs. 8(e), the lattice spacing was measured, and 

the lattice value is 0.356 nm, which is corresponding to W (110) (cf JCPDS file No. 

33-13870) (as shown in the inset of the Fig. 8(e)). It is well known that the plastic 

deformation of metallic materials is a competition between dislocation movement and 

deformation twinning processes [25].  

Fig. 8 (a) TEM image of W80-Cu20 composites, (b) electron diffraction pattern of position 1 in 

Fig. 8(a); (c) electron diffraction pattern of position 2 in Fig. 8(a); (d) TEM image of deformed 

W80-Cu20 composites; (e) high magnification of marked 3 zone in Fig. 8(d) and inset shows 

high-magnification images of twinning, (f) EDS of marked position 3 zone in Fig. 8(d). 

 



13 
 

The tensile stress-strain curves of the W80-Cu20 composites before and after the 

SFD treatment are plotted in Fig. 9(a). The effect of sliding friction on the tensile 

strength and elongation of the composites are shown in Fig. 9(b). It can be seen that 

both the stress-strain curves of untreated and treated composites show a similar trend 

(i.e. elastic deformation, followed by plastic deformation, before the final fracture of 

the samples). However, the SFDed W80-Cu20 composites exhibit much higher yield 

(YS) and ultimate tensile strength (UTS) than those of the untreated composites. The 

YS and UTS of the SFDed W80-Cu20 composites are 308.74 MPa and 553.60 MPa, 

respectively, which are about 16.93% and 6.13% higher than those of the untreated 

composites. The higher tensile strength of SFDed composite is mainly attributed to 

the fine W particles and higher density of the composites. The effects of particle size 

of W on mechanical properties have also been observed by Gong et al [26], who 

reported that the finer W grains are beneficial to obtain deformation strengthening 

because of the higher amount of grain boundaries in the fine-grained alloy than those 

in the alloys with larger grains. The reduced grain size should be the most important 

factor in strengthening of the composites in this work. Theoretically, the larger grain 

size often leads to the poor mechanical properties at room temperature [27]. In 

addition, the higher mechanical properties of the SFDed composites are attributed to 

the reduction of Cu phase due to the squeezing of the Cu phase from the surface into 

the sub-layer. The elongation to failure of the SFDed W80-Cu20 composites is 2.0%, 

which is of 65.3% lower compared to 5.77% of untreated composites. 
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Fig. 9 (a) Tensile stress-strain curves and (b) summaries of the data of the W80-Cu20 composites 

and 20 cycles SFDed composites, respectively. 

The fracture surfaces of W80-Cu20 composites before and after SFD treatment 

are shown in Fig. 10. The W particle is lighter in color while the Cu phase is darker in 

color in these pictures. The smooth and nearly round areas represent the W-W 

inter-granular fracture mode of W at its grain boundaries. As illustrated in Fig. 10(a), 

W particles in untreated composites mainly demonstrated inter-granular brittle 

fracture. The fracture surfaces of W particles show many large dimples, and hence, 

the failure of composites with high content of W occurs by separation of W/W to 

produce cleaved W grains (with river-bank like feature as indicated in Fig. 10(a)) after 

strain hardening of the Cu phase and fracture of the matrix [28]. The W-W interface in 

W-Cu composites is the places where the fracture occurring, mainly due to existence 

of some small impurity phase particles, such as oxides and brittle compounds at the 

grain boundaries.  

Figs. 10(b) and (c) are SEM micrographs of SFDed composites close to the 

surface and in the center area of the sample, respectively. As can be seen, the 

centerregion of the SFDed sample (Fig. 10(b)) has a similar fracture surface with 

those of the untreated composite (Fig. 10(a)), while there is a change in the fracture 

mode in the edge areas after SFD treatment (Fig. 10(c)). It confirms the development 

of gradient microstructure due to severe plastic deformation after the SFD treatment.  

As illustrated in Fig. 10(c), the W skeleton has been completely deformed. For 

this reason, unlike the fracture surfaces in Fig. 10(a) and Fig. 10(b), W-W contiguity 
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is decreased completely. W-W contiguity is a microstructural feature in W-Cu 

composite and is related to number of bonds between adjacent tungsten particles. In 

other word, W-W contiguity is directly proportional to total W-W interfaces. In 

addition, the particle size of W decreases which leads to the reduction in uniformity of 

the composite structure. It can be concluded that the SFD treatment leads to a 

decrease in the W-W contiguity, a significant reduction in particle size, and a gradual 

change in microstructure in the surface area of the SFDed W80-Cu20 composites. 

In summary, the sliding friction deformation results in two apparent changes in 

microstructure based on the analysis of fracture surfaces of the composites:  

(I) At regions near to the surface (region A in Fig. 4(f)), tungsten particles are 

completely separated from each other due to destroying of the tungsten skeleton (Fig. 

10(c)). This leads to the diminish of W-W interfaces and significant reduction in 

tungsten particle size after treatment. The fracture surface shows trans-granular 

fracture mode in SEM images as shown in Fig. 10(c).  

(II) At regions beneath the exposure surface (region B in Fig. 4(f)), inter-granular 

fracture takes place due to applied load. However, the load applied to this region is 

less than the external applied load. This reduced load results in the lower level of 

deformation. Therefore, it can only separate tungsten particles from each other, but 

will not be able to break up the tungsten particles and reduce their sizes. The fracture 

surface shows trans-granular mode as shown in Fig. 10(b), which has a structure 

similar to that of the original material (Fig. 10(a)). 

Fig. 10 SEM images near the surface area of the composites (a) the original W80-Cu20 
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composites, (b) center area of the SFDed composites; and (c) edge area of the SFDed composite. 

 

The schematic illustration of the SFD treatment of W80-Cu20 composites is 

presented in Fig. 11. Fig. 11(a) shows the microstructure of the untreated W80-Cu20 

composites. The gray regions are the W skeleton composed of W particles, the black 

lines are W-W grain-boundaries, and the orange regions are Cu phases filled inside 

the W skeleton. Firstly, the W-W boundaries start to crack, followed by the collapse of 

W skeleton into fragmented skeletons under the repeated sliding friction treatment. 

However, in Fig. 11(b), the Cu exhibits a significant plastic deformation owing to its 

low strength and high ductility, while the W particles exhibit very slight deformation 

because the W-W boundaries are the weak points and hence intergranular separation 

of W grains easily occurs [29]. With further sliding deformation, more W-W 

boundaries are separated, and more fragmented skeletons collapse into smaller W 

particles (in Fig. 11(c)). These smaller W particles are further elongated. The Cu 

phase exhibits a much more severe deformation, wrapping the W particles and 

accommodating the plastic deformation of the W80-Cu20 composites. The Cu content 

in the SFDed W80-Cu20 composites (as shown in Fig. 11(c)) is lower than that in the 

untreated composites (as shown in Fig. 11(a)). This is due to the low bond strength 

between the mechanically mixed W particles and Cu. As a result, Cu could be reduced 

from the surface of the SFDed W80-Cu20 composites during the SFD process. 

Fig. 11 Schematic illustrations of the deformation process of the W80-Cu20 composites during 

SFD process: (a) the original microstructure of the W80-Cu20 composites; (b) the collapse of the 
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W skeleton; and (c) further deformation of the W particles. 

 

4. Conclusions 

In this study, sliding friction treatment method was applied on the W80-Cu20 

composites. Cross-section microstructure, fracture mode and tensile/electrical 

properties of the SFDed W-Cu composites were investigated. The following 

conclusions can be drawn from the present work: 

(1) W particles of composites were significantly refined during sliding friction 

treatment. After sliding friction, the W particles with an average size of 2.60 µm 

exhibited a severe and inhomogeneous deformation. Also, SFD treatment resulted in 

the destroying of W skeleton due to applied load and the fracture mode changed from 

predominately inter-granular mode to trans-granular one. Significant reduction in 

tungsten particle size was also observed. 

(2) Dislocation and boundaries clearly existed in the deformed W particles, and 

dislocation tangles were also formed. The lattice value of lattice spacing was 

measured to be 0.356 nm. 

(3) The yield strength and ultimate tensile strength of SFDed W80-Cu20 composites 

were 308.74 MPa and 553.60 MPa, respectively, which were higher than those for 

untreated composites. The higher tensile strength of SFDed composite may be 

attributed to the fine W particles and high density of composites as well as the 

reduction of the superficial Cu phase, in particularly, the reduced grain size should be 

the most important factor in the increase in the tensile strength. 
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(4) The electrical conductivity of the sample decreased from 33 IACS% to 28.5 

IACS% after SFD treatment owing to the lower Cu content in SFDed composites. 

Based on EDS analysis results of the wear debris, Cu content in treated composites 

was lower than that of untreated material due to the squeezing of Cu during the 

deformation process.  

(5) The SFD treatment resulted in the development of a gradient microstructure due 

to depth of the affected material by sliding load. In other word, the content of copper 

phase in the near-surface areas was reduced due to squeezing of Cu during 

deformation, and it gradually increased with an increase in the distance from the 

surface of SFDed sample, and it ultimately reached the composition of the original 

material. 
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Figure captions 

Fig. 1 (a) Photo showing the sample dimensions; (b) SEM image of cross-section of polished 

W80-Cu20 composites. 

Fig. 2 (a) The designed set-up for SFT process; (b) ~ (e) an illustration of the step-by-step SFD 

processes [22]. 

Fig. 3 Observing location of the texture testing. 

Fig. 4 The cross-section SEM images of (a) W80-Cu20 composites and (b) SFDed composites 

after 20 cycle sliding treatment, (c) and (d) statistical distribution of the W grain size of W 

particles in Fig. (a) and (b), respectively, (e) and (f) elemental mapping analysis results from 

W80-Cu20 composites and SFTed composites after 20 cycle sliding treatment, respectively. 

Fig. 5. The longitudinal cross-sectioned SEM images of W80-Cu20 composites: (a) original 

W80Cu20 composites; (b) SFDed composite after 20 cycles; (c) in the edge area; (d) in the center 

area. (e) and (f) elemental mapping analysis results from W80-Cu20 composites and SFDed 

composites after 20 cycle sliding treatments, respectively. 
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Fig. 6 XRD patterns of the W80-Cu20 composites; (a) original composites and (b) SFDed 

composites after 20 cycle treatments. 

Fig. 7 Pole figure (110), (200) and (211) of orgional W80-Cu20 composites (a) and SFDed 

W80-Cu20 composites (b) taken along cross section direction of the samples. 

Fig. 8 (a) TEM image of W80-Cu20 composites, (b) electron diffraction pattern of position 1 in 

Fig. 8(a); (c) electron diffraction pattern of position 2 in Fig. 8(a); (d) TEM image of deformed 

W80-Cu20 composites; (e) high magnification of marked 3 zone in Fig. 8(e) and inset shows 

high-magnification images of twinning, (f) EDS of marked position 3 zone in Fig. 8(e). 

Fig. 9 (a) Tensile stress-strain curves and (b) summaries of the data of the W80-Cu20 composites 

and 20 cycles SFDed composites, respectively. 

Fig. 10 SEM images near the surface area of the composites (a) the original W80-Cu20 

composites, (b) center area of the SFDed composites; and (c) edge area of the SFDed composite. 

Fig. 11 Schematic illustrations of the deformation process of the W80-Cu20 composites during 

SFD process: (a) the original microstructure of the W80-Cu20 composites; (b) the collapse of the 

W skeleton; and (c) further deformation of the W particles. 
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Fig. 1 (a) Photo showing the sample dimensions; (b) SEM image of cross-section of polished 

W80-Cu20 composites. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) The designed set-up for SFD process; (b) ~ (e) an illustration of the step-by-step SFD 

processes [22]. 
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Fig. 3 Observing location of the texture testing. 
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Fig. 4 The cross-section SEM images of (a) W80-Cu20 composites and (b) SFDed composites 

after 20 cycle sliding treatment, (c) and (d) statistical distribution of the W grain size of W 

particles in Fig. (a) and (b), respectively, (e) and (f) elemental mapping analysis results from 

W80-Cu20 composites and SFDed composites after 20 cycle sliding treatment, respectively. 
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Fig. 5. The longitudinal cross-sectioned SEM images of W80-Cu20 composites: (a) original 

W80Cu20 composites; (b) SFDed composite after 20 cycles; (c) in the edge area; (d) in the center 

area. (e) and (f) elemental mapping analysis results from W80-Cu20 composites and SFDed 

composites after 20 cycle sliding treatments, respectively. 
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Fig. 6 XRD patterns of the W80-Cu20 composites; (a) original composites and (b) SFDed 

composites after 20 cycle treatments. 
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Fig. 7 Pole figure (110), (200) and (211) of orgional W80-Cu20 composites (a) and SFDed 

W80-Cu20 composites (b) taken along cross section direction of the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 
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Fig. 8(a); (c) electron diffraction pattern of position 2 in Fig. 8(a); (d) TEM image of deformed 

W80-Cu20 composites; (e) high magnification of marked 3 zone in Fig. 8(e) and inset shows 

high-magnification images of twinning, (f) EDS of marked position 3 zone in Fig. 8 (e). 
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and 20 cycles SFDed composites, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 SEM images near the surface area of the composites (a) the original W80-Cu20 

composites, (b) center area of the SFDed composites; and (c) edge area of the SFDed composite. 
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Fig. 11 Schematic illustrations of the deformation process of the W80-Cu20 composites during 

SFD process: (a) the original microstructure of the W80-Cu20 composites; (b) the collapse of the 

W skeleton; and (c) further deformation of the W particles, respectively.  

 

 

Tables captions 

Table 1. Processing parameters of fabrication of W80-Cu20 composites by hot 

pressing sintering. 

Table 2 The electrical conductivity, relative density and micro-hardness of the 

W80-Cu20 composites in the work. 
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Table 1. Processing parameters of fabrication of W80-Cu20 composites by hot 

pressing sintering. 

Sample Processing parameters Values  

W80-Cu20 composites 

Temperature (
o
C) 1500 

Holding time (min) 120 

Pressure (MPa) 30 

 

 

 

 

Table 2 The electrical conductivity, relative density and micro-hardness of the 

W80-Cu20 composites in the work. 

 Original SFDed 

Electrical conductivity/ IACS% 33 30.5 

Relative density/ % 96 98.5 

Micro-hardness/ HV 214.5 308 

* Electrical conductivity reported as percentage of international annealed copper standard (%IACS). 

 

 

 

 

 

 

 

 

 

 

 

 


