3,690 research outputs found

    Quasiparticle light elements and quantum condensates in nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements (2A42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(P; T, n_n,n_p) that depend on the center of mass momentum P\vec P, the temperature TT, and the total densities nn,npn_n,n_p of neutrons and protons, respectively. We consider the composition and thermodynamic properties of nuclear matter at low densities. At low temperatures, quartetting is expected to occur. Consequences for different physical properties of nuclear matter and finite nuclei are discussed.Comment: 5 pages, 1 figure, 2 table

    Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    Full text link
    (Abridged) We derive the structure of the Galactic stellar Warp and Flare using 2MASS RC and RGB stars, selected at mean heliocentric distances of 3, 7 and 17 kpc. Our results are: (i) a clear stellar warp signature is derived for the 3 selected rings; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and HI gas; (iii) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (+15 degrees) is close to the orientation angle of the Galactic bar and this produces an asymmetric warp for the inner rings; (iv) a Northern/Southern warp symmetry is observed only for the ring at 17 kpc; (v) treating a mixture of thin and thick disk populations we trace the disk flaring and derive a constant scale-height (~0.65 kpc) within R(GC)~15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R(GC)~23 kpc; and (vi) these results provide further robust evidence that there is no disk radial truncation at R(GC)~14 kpc. In the particular case of the Canis Major over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l=240. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion etc) of CMa are consistent with it being a normal Milky Way outer-disk population, thereby leaving no justification for a more complex interpretations of its origin. The present analysis does not provide a conclusive test of the structure or origin of the Monoceros Ring. Nevertheless, we show that a warped flared Milky Way contributes significantly at the locations of the Monoceros Ring.Comment: 25 pages, 22 figures, accepted for publication in A&A. A higher resolution pdf file is available at http://wwwuser.oat.ts.astro.it/zaggia/public_html/warp

    Wind loads on ground-based telescopes

    Get PDF
    One of the factors that can influence the performance of large optical telescopes is the vibration of the telescope structure due to unsteady wind inside the telescope enclosure. Estimating the resulting degradation in image quality has been difficult because of the relatively poor understanding of the flow characteristics. Significant progress has recently been made, informed by measurements in existing observatories, wind-tunnel tests, and computational fluid dynamic analyses. We combine the information from these sources to summarize the relevant wind characteristics and enable a model of the dynamic wind loads on a telescope structure within an enclosure. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are defined as a function of relevant design parameters, providing a significant improvement in our understanding of an important design issue

    Bounded Verification with On-the-Fly Discrepancy Computation

    Get PDF
    Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.Comment: 24 page

    On optimal coordinated dispatch for heterogeneous storage fleets with partial availability

    Get PDF
    This paper addresses the problem of optimal scheduling of an aggregated power profile (during a coordinated discharging or charging operation) by means of a heterogeneous fleet of storage devices subject to availability constraints. Devices have heterogeneous initial levels of energy, power ratings and efficiency; moreover, the fleet operates without cross-charging of the units. An explicit feedback policy is proposed to compute a feasible schedule whenever one exists and scalable design procedures to achieve maximum time to failure or minimal unserved energy in the case of unfeasible aggregated demand profiles. Finally, a time-domain characterization of the set of feasible demand profiles using aggregate constraints is proposed, suitable for optimization problems where the aggregate population behaviour is of interest

    Torsional Capacity of R/C beams

    Get PDF
    The torsional capacity of R/C beams is considered in this paper. On the basis of Batti and Almughrabi theory, a new general formula is proposed. Accordingly to their theory, this formula takes into account that stirrups influence the concrete torsional capacity because of their involvement in the aggregate interlock. A large number of previous test results, available in the literature (87 beams), has been considered to determine a few coefficients, by minimizing the coefficient of variation of the experimental-to-theoretical torsional capacity ratio. The obtained contributions of concrete and reinforcement on torsional capacity have both a sound physical meaning, which was not the case of the original Batti and Almughrabi\u2019s expressions. The theoretical results obtained with the proposed formula have been compared with the torsional capacities provided by other already available formulae and by some design codes. It is shown that the proposed formula is very efficient, since the computed capacities are very close to the test results and - on the whole - much closer than other well known formulae

    Distributed Control of Micro-Storage Devices With Mean Field Games

    Get PDF
    This paper proposes a fully distributed control strategy for the management of micro-storage devices that perform energy arbitrage. For large storage populations, the problem can be approximated as a differential game with infinite players (mean field game). Through the resolution of coupled partial differential equations (PDEs), it is possible to determine, as a fixed point, the optimal feedback strategy for each player and the resulting price of energy if that strategy is applied. Once this price is calculated, it can be communicated to the devices, which are able to independently determine their optimal charge profile. Simulation results are provided, calculating the fixed point through numerical integration of the PDEs. The original model is then extended in order to consider additional elements, such as multiple population of devices and demand uncertainty

    Heterogeneous network flow and Petri nets characterize multilayer complex networks

    Get PDF
    Interacting subsystems are commonly described by networks, where multimodal behaviour found in most natural or engineered systems found recent extension in form of multilayer networks. Since multimodal interaction is often not dictated by network topology alone and may manifest in form of cross-layer information exchange, multilayer network flow becomes of relevant further interest. Rationale can be found in most interacting subsystems, where a form of multimodal flow across layers can be observed in e.g., chemical processes, energy networks, logistics, finance, or any other form of conversion process relying on the laws of conservation. To this end, the formal notion of heterogeneous network flow is proposed, as a multilayer flow function aligned with the theory of network flow. Furthermore, dynamic equivalence is established with the framework of Petri nets, as the baseline model of concurrent event systems. Application of the resulting multilayer Laplacian flow and flow centrality is presented, along with graph learning based inference of multilayer relationships over multimodal data. On synthetic data the proposed framework demonstrates benefits of multimodal flow derivation in critical component identification. It also displays applicability in relationship inference (learning based function approximation) on multimodal time series. On real-world data the proposed framework provides, among others, multimodal flow interpretation of U.S. economic activity, uncovering underlying empirical steady state probability distribution, as well as inherent network (economic) robustness

    Convergence and optimality of a new iterative price-based scheme for distributed coordination of flexible loads in the electricity market

    Get PDF
    This paper proposes a novel distributed control strategy for large-scale deployment of flexible demand. The devices are modelled as competing players that respond to iterative broadcasts of price signals, scheduling their power consumption to operate at minimum cost. By describing their power update at each price broadcast through a multi-valued discrete-time dynamical system and by applying Lyapunov techniques, it is shown that the proposed control strategy always converges to a stable final configuration, characterized as a Wardrop (or aggregative) equilibrium. It is also proved that such equilibrium is socially efficient and optimizes some global performance index of the system (e.g. minimizes total generation costs). These results are achieved under very general assumptions on the electricity price and for any penetration level of flexible demand. Practical implementation of the proposed scheme is discussed and tested in simulation on a future scenario of the UK-grid with large numbers of flexible loads
    corecore