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On optimal coordinated dispatch for heterogeneous
storage fleets with partial availability
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Abstract—This paper addresses the problem of optimal
scheduling of an aggregated power profile (during a coordinated
discharging or charging operation) by means of a heterogeneous
fleet of storage devices subject to availability constraints. Devices
have heterogeneous initial levels of energy, power ratings and
efficiency; moreover, the fleet operates without cross-charging of
the units. An explicit feedback policy is proposed to compute
a feasible schedule whenever one exists and scalable design
procedures to achieve maximum time to failure or minimal
unserved energy in the case of unfeasible aggregated demand
profiles. Finally, a time-domain characterization of the set of
feasible demand profiles using aggregate constraints is proposed,
suitable for optimization problems where the aggregate popula-
tion behaviour is of interest.

Index Terms—Optimal storage management, Storage fleet
aggregation, Flexible demand, Distributed optimal control.

I. INTRODUCTION

POWER networks, in coming years, are likely to signifi-
cantly rely on distributed storage assets in order to ease

up the task of balancing demand and supply, both during
normal operation or in case of power outages. This is expected,
on one hand, because of increased penetration of renewable
technologies and the volatility of supply it entails; on the other,
because of widespread decarbonisation of the transport sector
(and consequent adoption of electric vehicles). The flexibil-
ity afforded by a considerable amount of storage capacity
connected permanently or intermittently to the network has
a big potential for limiting peak demands and related costs,
and delivering balancing services to the grid. Recent research
has systematically classified a significant amount of literature
dealing with optimal energy management for storage devices
[14], [15], [16]. Specifically, the work [14] introduces an
adaptive charging algorithm with the objective of peak-load
management. Reference [15] proposes a decentralized strategy
for numerous identical electric vehicles (EVs) under the non-
cooperative games to minimize the charging cost. Cooperative
control of network control theory is developed in [16] to ensure
the satisfaction of both energy balance and fair utilization
among dispersed energy storage systems.

Under such future scenarios, one issue becomes fundamen-
tal; how to schedule power profiles of a multitude of storage
devices while respecting individual rated power and energy
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constraints and, at the same time, fulfilling a preassigned
aggregate power profile for the fleet. This question arises both
during a hypothetical “discharging operation”, viz. when the
fleet is acting as a “service provider” and compensates for
lack of power due to outages or fluctuations in availability of
renewable generation, or during the “charging phase”, when
storage devices are recharged to meet individual energy needs
and the aggregate profile is designed so as to possibly reduce
peaks in demand or to minimize conventional generation costs.

Such questions have recently received considerable atten-
tion from the community (see [1] and references therein
for a recent survey and reasoned literature classification
based on keywords such as energy storage and optimal
policy/strategy/management). For instance, [2] presents an
application of dynamic programming in the estimation of the
capacity value of storage devices. A dynamic model to approx-
imate the power/energy capacity of aggregations of electric ve-
hicles is developed in [19]. The aggregate flexibility provided
by a collection of thermostatically controlled loads (TCLs)
is characterized by [23] using a stochastic battery model.
The authors of [18] adopt Model Predictive control (MPC)
to control multiple battery sets to track an aggregated set-
point trajectory while minimizing battery degradation, battery
system and network losses. Reference [22] proposes an algo-
rithmic framework which controls the dispatchable distributed
energy resources (DERs) to the power demand request from
transmission system at the feeder substation. Demand dispatch
for regulation of the power grid is considered in [17], based
on randomized local control algorithms for homogeneous load
in a mean field control setting. More recently, the control
architectures for a fleet of diverse DERs using the packetized
energy management dispatch paradigm has been developed in
[21]. Notions of controlled invariant sets have been proposed
in [3], to achieve optimality preserving aggregation of fleets. In
[20], invariant sets are also used to ensure safe coordination of
systems with both local and global constraints while a popula-
tion of homogeneous air conditioners tracks a power trajectory.
[4] introduces an optimal coordination policy for fleets seeking
to fulfill a preassigned reference signal (subject to penalty
costs for unmet demand) and achieving profit maximization
taking into account the service and recharging phases. Our
approach complements the existing literature in two respects:
i) it considers fully heterogeneous fleets, allowing different
power ratings, different initial and target energy levels, differ-
ent non-unity efficiency and different availability windows; ii)
it provides guaranteed and scalable optimal solutions which
may help an aggregator monitor its flexibility provision in
unidirectional power transfer operations, viz. neglecting the
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recovery phase, by computing exact optimal dispatch profiles
in real time.

In this context, we adopt and further develop the approach
proposed in [5], [6], [7], [8]. In [5] an optimal causal dispatch
policy is introduced, for heterogeneous storage fleets unable to
cross-charge, and seeking to deliver a pre-assigned aggregate
demand profile, while maximizing future flexibility, viz. the
ability of meeting future power requests. Remarkably, the same
policy was first introduced in [9], in the context of hydro-
reservoirs. Further optimality properties, including the ability
to minimize time-to-failure or unserved energy were high-
lighted in subsequent publications [6], [8], while an explicit
and remarkably effective time-domain characterization of the
set of feasible power profile demands is provided in [7], using
the notion of load duration curves. An in depth compendium
of the theory, with new insights and subsequent interpretations,
can be found in [10]. While such theory has been developed
taking into account heterogeneous fleets of devices, it neglects
the possibility of partial availability, viz. the fact that devices
may be connected to the grid during different time intervals
over the considered prediction horizon, as would typically be
expected of i.e. electric vehicles.

The present paper extends the approach of [10] to deal with
the case of storage devices with different availability windows
(or, more generally, availability sets), heterogeneous power
ratings and initial energy values. Its contribution is manifold:

• On one hand, it shows how to convert the dispatch design
problem for a fleet subject to availability constraints
(under a no cross-charging assumption) into the dispatch
design of an augmented demand signal for a similar
fleet without availability constraints and with possible
complemented initial energy levels; hence, it broadens
applicability of the previous results to the current set-up.

• It shows by means of an example, that no single causal
policy exists in this case and provides a characterization
of the set of aggregate power profiles that a heterogeneous
fleet of given initial energy, power ratings and availability
sets is able to deliver. Counter-examples show why sim-
pler necessary conditions are unable to capture the full
complexity of the feasible set of power profiles.

• It highlights how to leverage the new proposed policies in
order to derive optimal power schedules with minimum
unserved energy or maximum time-to-failure and by con-
sidering novel medium and large scale examples where
such approaches are illustrated.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

A. System description and objectives

Let N denote a finite collection of batteries (of cardinality
N ). Each battery i ∈ N is constrained by a rated power
P̄i, quantifying its maximum discharging rate. Our aim is
to analyze and design dispatch policies for the fleet over a
given bounded time interval T ⊂ [0,+∞). To this end, let
Ei(t) denote the state of charge of the i-th device at time
t ∈ T , viz. the amount of externally measured energy stored
in the device. Notice that measuring energy externally allows
to factor in possibly heterogeneous and non-unity efficiencies,

in particular, by defining Ei(t) = ηiẼi(t) where Ẽi denotes
internally measured energy and ηi the round-trip efficiency
coefficient. The differential equations given below describe the
time-evolution of Ei(t):

Ėi(t) = −ui(t) (1)

with initial configuration of energy levels, Ei(0), i ∈ N . The
variable ui(t) is the instantaneous power delivered by the i-th
battery, which needs to fulfill:

ui(t) ∈ [0, P̄i], ∀ t ∈ T . (2)

Together with constraints (2), we consider the additional pos-
sibility of devices operating within a pre-assigned availability
window (or more in general availability set) Ai ⊂ T , so that:

ui(t) = 0, ∀ t ∈ T \Ai. (3)

Our first objective is to ascertain, for any given power profile
d : T → [0,+∞), if there exists a control action ui(·), i ∈ N ,
fulfilling constraints (2) and (3), while at the same time∑

i∈N
ui(t) = d(t), ∀ t ∈ T , (4)

and the associated solution of (1) fulfills Ei(t) ≥ 0, ∀ t ∈ T .

Assumption 1. Without loss of generality, we assume the
following inequality:

d(t) ≤
∑

i∈N :t∈Ai

P̄i. (5)

Since any power in excess of this bound could never
be delivered, the scheduling problem can be reformulated
by considering a modified demand signal saturated at this
maximum level.

For ease of notation, we arrange energy values in a vector
E(t) := [E1(t), E2(t), . . . , EN (t)]′. Moreover, for any given
E(0) we define the set of feasible power profiles:

F(E(0)) :=
{
d(·) : T → [0,+∞) :

∃{ui : T → [0, P̄i]}i∈N :
ui(t) = 0, ∀ t /∈ Ai,∀ i ∈ N
Ei(0) ≥

∫
T ui(τ)dτ, ∀ i ∈ N

d(t) =
∑

i∈N ui(t),∀ t ∈ T
}
.

(6)

Hence, our preliminary task is to find out if d(·) ∈ F(E(0)),
and if so, what is a suitable dispatch policy. In practice, this
question arises whenever a fleet of storage devices are required
to coordinate in delivering energy (without cross-charging) to
jointly fulfil a given power reference signal d(t). Previous
literature, [5], [8], has answered such questions for the case of
full availability, viz. windows coinciding with T . We approach
the problem by suitably modifying the scheduling proposed in
[5] (later denoted Greedy Greatest Discharge Duration First
policy) to address the issue of availability windows.

Our main contribution is a constructive design algorithm
for a feasible policy and a supporting theoretical analysis,
showing that the problem can be equivalently framed as one
of delivery of an auxiliary (increased) power profile for a fleet
with suitably augmented initial energy levels, identical power
ratings and full availability over the considered interval.
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As in [5], we introduce a new set of coordinates, the so
called time-to-discharge variables, defined as:

xi(t) = Ei(t)/P̄i. (7)

Accordingly, the state evolution is governed by:

ẋi(t) = −ui(t)/P̄i, xi(0) = Ei(0)/P̄i. (8)

Some additional notations are useful to formulate the proposed
feedback policy. More closely, for any discharge duration τ ,
we denote the set of agents Nτ (x) := {i ∈ N : xi = τ},
where x ∈ RN is the stacked state vector of time-to-discharge
over all devices. Clearly, N =

⋃
τ≥0 Nτ (x), and this partitions

N as Nτ1 ∩ Nτ2 = ∅ for τ1 ̸= τ2. Overall, only a finite
number of Nτ are non-empty, at each time t, and we order
the corresponding discharge time as, τ1(t) > τ2(t) > τ3(t) >
. . . > τG(t)(t), with G(t) ≤ N .

B. Greedy-Greatest-Discharge-Duration First policy

It is useful to first introduce the Greedy-Greatest-Discharge-
Duration First (GGDDF) policy without any reference to
availability sets:

ui(t) =



P̄i if i ∈ Nτk and∑
h≤k

∑
j∈Nτh

P̄j ≤ d(t)

r̃(t)P̄i if i ∈ Nτk and∑
h<k

∑
j∈Nτh

P̄j ≤ d(t)

d(t) <
∑

h≤k

∑
j∈Nτh

P̄j

0 otherwise

(9)

where the value of r̃(t) ∈ [0, 1] is determined according to:

r̃(t) =
d(t)−

∑
h<k

∑
j∈Nτh

P̄j∑
j∈Nτk

P̄j

where k is such that
∑

h<k

∑
j∈Nτh

P̄j ≤ d(t) <∑
h≤k

∑
j∈Nτh

P̄j . Accordingly, the amount of power ex-
tracted from all devices (regardless of availability) equals the
instantaneous demand d(t), viz.∑

i∈N
ui(t) = d(t), (10)

For later use, we denote this feedback policy explicitly as:

u(t) = K̃(x(t), d(t)), (11)

with the associated system of equations:

ẋ(t) = −ΩK̃(x(t), d(t)). (12)

where Ω = diag[P̄−1
1 , P̄−1

2 , . . . , P̄−1
N ]. The solution of (12) is

denoted as φ̃(t, x, d(·)).
While taking into account the availability sets, the explicit

feedback policy to dispatch d(t) at time t is expressed as

ui(t) =



P̄i if i ∈ Nτk and∑
h≤k

∑
j∈Nτh

:t∈Aj
P̄j ≤ d(t)

r(t)P̄i if i ∈ Nτk and∑
h<k

∑
j∈Nτh

:t∈Aj
P̄j ≤ d(t)

d(t) <
∑

h≤k

∑
j∈Nτh

:t∈Aj
P̄j

0 otherwise

(13)

where the value of r(t) ∈ [0, 1] is determined according to:

r(t) =
d(t)−

∑
h<k

∑
j∈Nτh

:t∈Aj
P̄j∑

j∈Nτk
:t∈Aj

P̄j

where k is such that
∑

h<k

∑
j∈Nτh

:t∈Aj
P̄j ≤ d(t) <∑

h≤k

∑
j∈Nτh

:t∈Aj
P̄j . In this case, it is remarked that:∑

i∈N :t∈Ai

ui(t) = d(t), (14)

viz. the amount of power extracted from the available devices
equals the instantaneous demand d(t). Moreover, this feedback
policy is explicitly denoted as:

u(t) = K(t, x(t), d(t)), (15)

which is referred as the GGDDF policy with availability sets.
We remark that time-dependence is made explicit in (15) since
the availability of devices at any time t directly influence the
amount of power extracted from each battery. With this in
mind, the fleet’s closed-loop equations read:

ẋ(t) = −ΩK(t, x(t), d(t)). (16)

Of course, the schedule (15) might induce solutions of (16)
violating the constraint that xi(t) ≥ 0 due to insufficient
initial energy; we ignore this, for the time being, as our main
goal is to compute how much energy the feedback policy
extracts outside of the availability window for the given power
profile d(t). Notice also that the constraint ui(t) = 0 for
t /∈ Ai is, for the time-being, not enforced. Specifically
if a device has a sufficiently high time-to-discharge, it will
be discharged by (15) regardless of its availability window.
Denote by φ(t, x(0), d(·)) the solution of (16) at time t with
initial condition x(0). Following similar steps as in [11] one
can show the properties 1) to 4) stated below:

1) For all initial conditions x(0) ∈ RN there exists a unique
Filippov solution (see [24]) of (16) defined for t ≥ 0.

2) The relative ordering of time-to-discharge is preserved
along solutions. Namely, for all t ≥ τ ≥ 0, it holds

xi(τ) ≥ xj(τ) ⇒ φi(t, x(0), d(·)) ≥ φj(t, x(0), d(·))

3) A corollary of the previous implication is:

xi(τ) = xj(τ) ⇒ φi(t, x(0), d(·)) = φj(t, x(0), d(·))

4) Furthermore, sets of agents with the same discharge
duration are monotonically non-decreasing in time (and
in fact strictly increasing whenever two or more sets
merge with each other as the corresponding discharge
time equalize)

5) φ(t, x(0), d(·)) is a cooperative (monotone) system [12]:
x1 ⪰ x2 ⇒ φ(t, x1, d(·)) ⪰ φ(t, x2, d(·)), ∀ t ≥ 0,
where x1 and x2 are temporarily used to denote two
different vectors of time-to-discharge, ⪰ component-wise
inequalities between vectors.

6) φ fulfils translation invariance, viz. φ(t, x(0)+δ1, d(·)) =
φ(t, x(0), d(·)) + δ1, where δ ∈ R is arbitrary and 1
denotes the vector of all ones of dimension N .

7) The flow is weakly contracting with respect to the infinity
norm: ∥φ(t, x1, d(·))− φ(t, x2, d(·))∥∞ ≤ ∥x1 − x2∥∞.
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Below we prove properties 5) - 7).

Proof. 5) Monotonicity of φ: Notice that, the feedback K is
such that Ki(t, x, d) is non-increasing with respect to xj for
all j ̸= i (increasing xj might trigger an increase in its priority
so that more energy will be taken from xj and, consequently,
possibly less will be extracted from xi). Moreover, while K is
discontinuous (in fact piece-wise constant in x), similar steps
as in Proof of Lemma 3.2.1 in [11], show that there exists
a unique (Filippov’s or Caratheodory) solution that fulfils
ẋ(t) = −ΩK(t, x(t), d(t)) for almost all t. By uniqueness
of solutions, combined with non-decreasingness of ẋi with
respect to xj for all i ̸= j, we conclude that system (16)
is cooperative ([12]). Hence, denoting by ⪰ componentwise
inequalities between vectors, we see that x1 ⪰ x2 ⇒
φ(t, x1, d(·)) ⪰ φ(t, x2, d(·)), ∀ t ≥ 0.

6) Translation invariance: Let 1 denote the vector of
all 1s of dimension N . For all x ∈ RN , all d ≥ 0
and any δ ∈ R it holds K(t, x + δ1, d) = K(t, x, d).
This follows because the relative ordering of time-to-
discharge is unaffected by a simultaneous δ increase
(or decrease) affecting all batteries. Hence, considering
any solution φ(t, x, d(·)) we see that: d

dtφ(t, x, d(·)) +
δ1 = −ΩK(t, φ(t, x, d(·)), d(t)) = −ΩK(t, φ(t, x, d(·)) +
δ1, d(t)). This proves that φ(t, x, d(·)) + δ1 is a solution of
system (16), with initial condition x + δ1. In other words,
φ(t, x+ δ1, d(·)) = φ(t, x, d(·)) + δ1.

7) Weak contraction: To prove weak contraction, let x1, x2

be arbitrary in RN . Let the vectors x and x̄ ∈ RN be defined
as x := min{x1, x2} and x̄ := max{x1, x2}, where min and
max are meant component-wise. Clearly x̄ ⪰ x1 ⪰ x and x̄ ⪰
x2 ⪰ x. Exploiting monotonicity we see that, for any t ≥ 0
and any d(·), φ(t, x̄, d(·)) ⪰ φ(t, xi, d(·)) ⪰ φ(t, x, d(·)), i =
1, 2. Rearranging the previous inequalities we can show that:

φ(t, x̄, d)− φ(t, x, d) ⪰ φ(t, x1, d)− φ(t, x2, d)

⪰ −φ(t, x̄, d) + φ(t, x, d).

Denoting component-wise absolute values of a vector as | · |
the previous inequality can equivalently be written as:

|φ(t, x1, d)− φ(t, x2, d)| ⪯ φ(t, x̄, d)− φ(t, x, d). (17)

Define next δ := maxi∈N |x1i − x2i|. Clearly, x̄ ⪯ x + δ1,
hence, by monotonicity and translation invariance:

φ(t, x̄, d)−φ(t, x, d) ⪯ φ(t, x+δ1, d)−φ(t, x, d) = δ1. (18)

Combining (17) with (18) yields |φ(t, x1, d) − φ(t, x2, d)| ⪯
δ1, and ultimately maxi∈N |φi(t, x1, d) − φi(t, x2, d)| ≤ δ.
Denoting by ∥·∥∞ infinity norms, the previous inequality reads
∥φ(t, x1, d)−φ(t, x2, d)∥∞ ≤ ∥x1−x2∥∞, which proves weak
contractivity of φ.

C. Equivalent feasible power dispatching

Let us introduce a vector λ = [λi]i∈N ∈ [0, 1]N which
we use to define the auxiliary time-to-discharge vector x̃i =
xi + λiµ(T \Ai), where µ denotes the Lebesgue measure in
R. Informally λi modulates between a minimum value of 0
(no energy) and 1 (energy corresponding to discharging at

full rate) the auxiliary energy needed by agent i to account
for discharging happening outside of its availability window.
For each x̃(0) we define the corresponding solution according
to our feedback policy, viz. x̃(t) := φ(t, x̃(0), d(·)). Then,
for each battery i ∈ Ni, we integrate the amount of energy
delivered outside of its availability set:

∆i =

∫
T \Ai

Ki(t, φ(t, x̃(0), d(·)), d(t)) dt (19)

Notice that ∆i is a function of λ, as x̃(0) is such. In particular,
we focus on the map:

Λ(λ) := [∆i/(P̄i · µ(T \Ai))]i∈N . (20)

The following properties of Λ are of interest:
1) Λ([0, 1]N ) ⊂ [0, 1]N

2) Λ : [0, 1]N → [0, 1]N is a continuous function

Proof. Continuity of Λ: We prove continuity of Λ under the
assumption that each availability set Aj is at most the union
of a finite number of (disjoint) intervals. Because of this, the
same is true of the complement:

T \Aj = [tj1, t
j
2] ∪ [tj3, t

j
4] ∪ . . . ∪ [tjM−1, t

j
M ] (21)

for some even integer M . Let µ = [µ(T \Aj)]j∈N . Then, for
each λ, we define x̃(0) = diag(µ)λ, and define the associated
map as: Λj(λ) = 1

P̄j

∫
T \Aj

Kj(t, φ(t, x̃(0), d(·)), d(t)) dt.
Recalling that Kj/P̄j is the derivative of −xj with respect
to time, and exploiting (21) we see that:

Λj(λ) =φj(t
j
1, x̃(0), d(·))− φj(t

j
2, x̃(0), d(·))

+ . . .+ φj(t
j
M−1, x̃(0), d(·))− φj(t

j
M , x̃(0), d(·)).

In order to assess the variation of Λ with respect to λ1 and
λ2, we consider, x̃1(0) = diag(µ)λ1 and x̃2(0) = diag(µ)λ2.
By the previous equation, then:

Λj(λ1)− Λj(λ2)

=φj(t
j
1, x̃1(0), d(·))− φj(t

j
2, x̃1(0), d(·))

+ . . .+ φj(t
j
M−1, x̃1(0), d(·))− φj(t

j
M , x̃1(0), d(·))

− φj(t
j
1, x̃2(0), d(·)) + φj(t

j
2, x̃2(0), d(·))

+ . . .− φj(t
j
M−1, x̃2(0), d(·)) + φj(t

j
M , x̃2(0), d(·))

=

M∑
m=1

(−1)m−1[φj(tm, x̃1(0), d(·))− φj(tm, x̃2(0), d(·))]

≤M∥x̃1(0)− x̃2(0)∥∞ = ∥diag(µ)[λ1 − λ2]∥∞.

Notice that a similar inequality holds for Λj(λ2) − Λj(λ1).
Hence, continuity of Λ follows, since ∥Λ(λ1) − Λ(λ2)∥∞ ≤
M̄ maxj(µj)∥λ1 − λ2∥∞, where M̄ is the maximum of M
over the fleet of devices.

Notice that, thanks to property 1., 2. and by virtue of
Brouwer’s fixed point Theorem, Λ admits (at least) one fixed
point, namely a value λ̄ ∈ [0, 1]N such that Λ(λ̄) = λ̄. Finally,
we present our first main result as below, and later provide
details of its proof.

Theorem 1. Consider a fleet of devices N with initial time-
to-discharge, power ratings and availability windows xj(0),
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P̄j , and Aj respectively, for j ∈ N . Let d(·) : T → R≥0 be
the aggregated power demand signal. Define, for convenience,
the corresponding energy vector Ej(0) = xj(0)P̄j . Let λ̄
be a fixed point of the associated map Λ and x̃(0) be
the corresponding vector of time-to-discharge, viz. x̃j(0) =
xj(0) + λ̄jµ(T \Aj) The following facts are equivalent:

1) The signal d(·) belongs to F(E(0)) (viz. it is feasible for
the fleet N subject to availability constraints);

2) The signal:

d̃(t) =
∑
j∈N

Kj(t, φ(t, x̃(0), d(·)), d(t)) (22)

is feasible for the fleet N without availability constraints
from the initial condition x̃(0).

Remark 1. Notice that Λ(·) computes the average power
absorbed outside of availability windows (for each device nor-
malized by its own rated power), while λ is the (normalized)
vector of additional energy provided to each device. Hence,
a fixed-point of Λ corresponds to the situation where the
extra energy provided exactly matches absorption outside of
availability windows.

Recalling that the policy K̃ in (12) differs from the feedback
policy K in (16) by the power aggregation equations (10)
and (14). In addition, the feedback policy K̃ is time-invariant
(unlike K) as its formulation neglects availability windows.
In order to prove our main result, Theorem 1, it is useful to
establish a mathematical relation between policies K̃ and K
introduced in (11) and (15), respectively.

Lemma 1. For any x ∈ RN , any d ≥ 0 and any t ∈ T , it
holds K(t, x, d) = K̃

(
x, d+

∑
j:t/∈Aj

Kj(t, x, d)
)

.

For the sake of readability, we defer the proof of the Lemma
to Appendix A. A useful consequence of Lemma 1 is the
following alternative expression for solutions of (12).

Lemma 2. Let x ∈ RN be arbitrary, and d : T →
R≥0 denote a given power profile. Let d̃(t) = d(t) +∑

j:t/∈Aj
Kj(t, φ(t, x, d(·)), d(t)). Then, for any t ∈ T , it

holds φ(t, x, d(·)) = φ̃
(
t, x, d̃(·)

)
.

Proof. Let x(t) := φ(t, x, d(·)). Clearly x(0) = x, moreover,
taking derivatives with respect to time yields:

ẋ(t) =− ΩK(t, x(t), d(t))

=− ΩK̃
(
x(t), d(t) +

∑
j:t/∈Aj

Kj(t, x(t), d(t))
)
.

Hence x(t) is also solution of (12) with initial condition x and
input signal d̃(t). This proves Lemma 2.

We are now ready to prove Theorem 1.

Proof. We show first the implication 1 ⇒ 2. Let d : T → R≥0

be a feasible power profile with respect to availability sets Aj

(j ∈ N ) and with initial time-to-discharge distribution x(0).
Let λ̄ be a fixed point of Λ(·) and x̃(0) defined according to
x̃j(0) = xj(0) + λ̄jµ(T \Aj). Then, there exist uj(·) : T →
[0, P̄j ], such that:

1)
∑

j∈N uj(t) = d(t);
2) uj(t) = 0 for all j and all t /∈ Aj ;
3)

∫
T uj(t)dt ≤ xj(0)P̄j .

Consider the following auxiliary input signals:

ũj(t) =

{
uj(t) if t ∈ Aj

Kj(t, φ(t, x̃(0), d(·)), d(t)) if t /∈ Aj .

We claim that ũj are a feasible input for demand profile
d̃ (without availability restrictions) and for initial time-to-
discharge distribution x̃(0). To this end notice that:∑
j∈N

ũj(t) =
∑

j:t∈Aj

uj(t) +
∑

j:t/∈Aj

Kj(t, φ(t, x̃(0), d(·)), d(t))

= d(t) +
∑

j:t/∈Aj

Kj(t, φ(t, x̃(0), d(·)), d(t))

=
∑

j:t∈Aj

Kj(t, φ(t, x̃(0), d(·)), d(t))

+
∑

j:t/∈Aj

Kj(t, φ(t, x̃(0), d(·)), d(t)) = d̃(t).

Moreover:∫
T
ũj(t)dt =

∫
Aj

uj(t)dt+

∫
T \Aj

Kj(t, φ(t, x̃(0), d(·)), d(t))dt

≤xj(0)P̄j + Λj(λ̄)µ(T \Aj)P̄j = x̃j(0)P̄j ,

where the last inequality follows by recalling that λ̄ is a fixed
point of Λ and definition of x̃(0). This completes the proof of
our claim.

We show next the implication 2 ⇒ 1. Let us assume d̃(·) be
feasible for initial condition x̃(0) and disregarding availability
windows. Then, by the main result in [5], it can be dispatched
through the GGDDF policy, and in particular: φ̃(t, x̃(0), d̃) ⪰
0 for all t ∈ T . By Lemma 2, it follows that φ(t, x̃(0), d(t)) =
φ̃(t, x̃(0), d̃) ⪰ 0 for all t ∈ T . Equivalently, for all j ∈ N :

P̄j x̃j(0)−
∫
T
Kj(t, φ(t, x̃(0), d(·)), d(t)) dt ≥ 0 (23)

We claim that the dispatch policy uj(t) defined below, proves
feasibility of d(t) for the fleet with initial condition x(0) and
availability windows Aj :

uj(t) =

{
Kj(t, φ(t, x̃(0), d(·)), d(t)) if t ∈ Aj

0 if t /∈ Aj .
(24)

Indeed, by definition of K, uj(t) ∈ [0, P̄j ] for all t ∈ T .
Moreover, according to (24), uj(t) = 0 for t /∈ Aj . In addition:∫
T
uj(t)dt =

∫
Aj

Kj(t, φ(t, x̃(0), d(·), d(t))dt

=

∫
T
Kj(t, φ(t, x̃(0), d(·), d(t)) dt

−
∫
T \Aj

Kj(t, φ(t, x̃(0), d(·), d(t)) dt

≤P̄j x̃j(0)−∆j = P̄j x̃j(0)− [Λ(λ̄)]jµ(T \Aj)P̄j

=P̄j x̃j(0)− λ̄jµ(T \Aj)P̄j = P̄jxj(0).

where the last inequality follows by (23) and (19), while the
subsequent derivations are from the (20) and recalling that
λ̄ is a fixed point of Λ(·). This completes the proof of the
implication.
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III. DISCUSSION AND INTERPRETATIONS

A. Construction of the feasible policy

Our first result, Theorem 1, provides a characterization of
feasible aggregate demand profiles for storage fleets in the
presence of availability constraints, by converting it to the
simpler (and previously addressed) problem of dispatch for
a fleet without availability constraints. These are the steps that
can be followed to compute the schedule:

1) Run a numerical or analytical simulation of the GGDDF
policy with availability windows within the time-interval
T to compute φ(t, x0, d(·)) and to integrate the amount of
energy delivered by each agents outside their availability
window, according to (19).

2) For any λ-dependent initialization x̃(0), define the map
Λ(λ), as specified in (20).

3) Compute fixed point λ̄ of Λ(·) by using a numerical
iterative scheme.

Notice that, by continuity of Λ, and forward invariance of
[0, 1]N , we may apply Brouwer’s fixed point Theorem, [13],
to conclude that such λ̄ always exists.

Extensive simulations have shown that the limit
limk→+∞ Λk(x̃(0)) exists for any choice of x̃(0) (though
this was not proved formally) leading to conjecture that a
fixed point can simply be computed by iterating the map Λ.
As shown in (24), the GGDDF policy initialized with x̃(0)
computed from λ̄ allows to use Kj(t, φ(t, x̃(0), d(·)), d(t)
restricted to the availability set Aj as a feasible dispatch
input for device j.

This dispatch policy matches a GGDDF policy without
availability windows for a suitably inflated demand signal,
but unlike the case of full availability, it is not causal, as
it requires prior computation of the fixed point λ̄ which,
implicitly, takes into account demand over the whole horizon.
As shown below, this is not a weakness of the approach,
but rather a consequence of the considered set-up. Indeed,
considering a two batteries fleet, is enough to show that no
causal policy exists in general.

B. Impossibility of causal dispatch

Consider a fleet N = {1, 2}, with rated powers P̄1 =
P̄2 = 1 and assume an initial discharge time x1(0) = 3 and
x2(0) = 6, respectively. The availability windows A1 = [0, 5]
and A2 = [0, 12] = T are assigned. We propose next two
feasible aggregated demand signals, d1(t) and d2(t), as shown
in Fig. 1. Notice that d1(t) and d2(t) coincide over the initial

0 1 2 3 4 5 6 7 8 9 10 11

1

2

d1(t)

A1

A2

0 1 2 3 4 5 6 7 8 9 10 11

1

2

d2(t)

A1

A2

Fig. 1. Feasible power profiles d1 and d2

interval [0, 2]. However, it is their respective behaviours for
t ≥ 2 which determines who is supposed to deliver the first
two power units. Specifically, d1(t) can only be fulfilled with
device 1 delivering power in the interval [0, 3] and device 2

delivering on the interval [5, 11]. On the contrary, d2(t) can
only be met if device 1 delivers power over the interval [2, 5]
and device 2 in the interval [0, 6]. This proves that, even in
elementary situations, causal dispatch policies do not exist.

In the light of our previous result, Theorem 1, it is worth
noticing that the dispatch for d2(t) coincides with a fixed point
λ̄ = [0, 0]′. Indeed, the GGDDF policy (without availability
windows) would initially allocate all the power to the second
device (because of its higher discharge time), and additionally
trigger battery 1 in the interval [2, 5]. The profile d1(t)
corresponds instead to λ̄ = [6/7, 0]′. Notice that, with such
choice of λ̄ we get x̃(0) = [3+7 · 6/7, 6]′ = [9, 6]′. Hence, in
[0, 3] only device 1 is discharging, due to its highest discharge
time, while at time 3 the following equality x̃1(3) = x̃2(3) = 6
is achieved, so that devices will then discharge together until
time 11, when they will both be empty. The energy delivered
outside the availability window by device 1 is therefore 6,
which corresponds to λ1 = 6/µ(T \A1) = 6/7. Instead
A2 = T and therefore λ2 = 0.

IV. TIME-DOMAIN CHARACTERIZATION OF FEASIBLE SET

In this Section, we present necessary and sufficient condi-
tions on the aggregate demand signal d(t) for feasibility with
respect to a fleet N with given initial conditions, power ratings
and availability sets. Our main result states that a signal d(t) is
feasible if and only if it fulfills a set of linear constraints that
can be explicitly computed as functions of initial conditions
and availability windows.

Theorem 2. Consider a fleet N of batteries with maximum
power ratings P̄j , availability windows Aj ⊂ T and initial
time-to-discharge xj(0) respectively, for all j ∈ N . A signal
d : T → [0,+∞) is feasible for N if and only if, for all
W ⊂ T the following inequality holds:∫

W
d(t) dt ≤

∑
j∈N

min{µ(Aj ∩W), xj(0)}P̄j . (25)

From a physical point of view, equation (25) requires that
the energy request over any time window W be less than
what the fleet can deliver, over the same time window W
by operating at rated power (for devices who have enough
energy) or at any other rate that yields a depletion of the
battery within the considered time window, for those who do
not have. It is worth pointing out that the above conditions, in
the case of Aj = [0,+∞) for all j ∈ N boil down to existing
characterizations of feasibility. Indeed, equation (25) reads:∫

W
d(t) dt ≤

∑
j∈N

min{µ(W), xj(0)}P̄j

=
∑
j∈N

P̄j

∫ µ(W)

0

1(t)− 1(t− xj(0)) dt,

(26)

with 1(·) denoting the Heaviside function. Specifically, for
non-increasing demand signals d(·), the maximum integral
value for a given set W of assigned measure µ(W), is achieved
for W = [0, µ(W)], viz.

∫
W d(t) dt ≤

∫ µ(W )

0
d(t) dt. Hence,

for all W of measure µ(W) = T condition (26) is fulfilled
if and only if it holds on the interval [0, T ]. Hence, (26) can
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equivalently be stated (in the case of non-increasing signals)
as: ∫ T

0

d(t)dt ≤
∫ T

0

∑
j∈N

P̄j [1(t)− 1(t− xj(0))] dt,

for all T ∈ T which is in agreement with the result in [7].
An important Corollary of Theorem 2 is for demand signals

d(t) which are piecewise constant on finitely many equally
spaced time intervals, and for availability sets which are union
of such equally spaced intervals. This corresponds to d(t) of
the form d(t) =

∑T
k=1 dk [1(t− k)− 1(t− (k + 1))] where

1(·) is the Heaviside function. From a practical point of view
this correspond to a discrete time formulation of the dispatch
problem. Let us denote the time-horizon as T = {1, 2, . . . , T}
and the availability windows Aj ⊆ T .

Corollary 1. Consider a fleet N of batteries with maximum
power ratings P̄j , availability windows Aj ⊂ T and initial
time-to-discharge xj(0) respectively, for all j ∈ N . A signal
d : T → [0,+∞) is feasible for N if and only if, for all
W ⊂ T the following inequality holds:∑

k∈W

d(k) ≤
∑
j∈N

min{card(Aj ∩W), xj(0)}P̄j . (27)

It is worth pointing out that inequalities (27) completely
characterize the set of feasible demand profiles for any fleet
N with arbitrary availability sets. For a time-horizon of T
sampling intervals, 2T constraints are enough to characterize
the polytope of feasible aggregated demand profiles, regardless
of the size of the fleet.

V. ON OPTIMALITY OF DISPATCH POLICIES

Throughout this Section, we highlight important optimality
properties of the dispatch policies previously introduced. We
defined already the set of feasible demand profiles for a fleet
subject to availability constraints, according to equation (6).
We define a similar notion, for fleets without full availability:

F̃(E(0)) :=
{
d(·) : [0,+∞) → [0,+∞) :

∃{ui : [0,+∞) → [0, P̄i]}i∈N :

Ei(0)−
∫ t

0
ui(τ)dτ ≥ 0, ∀ t ≥ 0

d(t) =
∑

i∈N ui(t)
}
.

(28)

One important feature of the GGDDF policy in the case of
full device availability, is that it maximizes future flexibility,
viz. the set of feasible demand profiles is as large as possible,
when compared with respect to set-inclusion. A similar result
also holds in this case, provided flexibility is measured on a
fleet without availability constraints, and only at the end of
the considered time horizon.

Theorem 3. Consider a fleet of devices N with initial time-to-
discharge, power ratings and availability windows xj(0), P̄j ,
and Aj respectively, for j ∈ N . Define, for convenience, the
corresponding energy vector Ej(0) = xj(0)P̄j and let d(·) :
T → [0,+∞) be a feasible aggregated demand signal, viz.
d ∈ F(E(0)). Let λ̄ be a fixed point of the associated map Λ
and x̃(0) be the corresponding vector of time-to-discharge, viz.

x̃j(0) = xj(0)+λ̄jµ(T \Aj). Denote by τ̄ = maxt∈T t. Then,
for any choice of u(t) such that d(t) =

∑
j:t∈Aj

uj(t) = d(t)

and d(t) ∈ [0, P̄j), the solution E(t) of (1) fulfils F̃(E(τ̄)) ⊆
F̃(Ω−1 φ(τ̄ , x̃(0), d)).

Proof. Consider any feasible policy u(t), which fulfils demand
d(t) over T . This can be made into a feasible policy ũ for ag-
gregated demand d̃ and on the same fleet with complemented
energy and disregarding availability constraints, according to:

ũj(t) =

{
uj(t) t ∈ Aj

K(t, φ(t, x̃(0), d(·)), d(t)) t /∈ Aj

Let Ẽ(t) be the solution corresponding to ũ(t) and for initial
condition Ẽ(0) = Ω−1x̃(0). By the optimality of GGDDF
policies with respect to feasibility of future demand signals,
we have F̃(Ẽ(t)) ⊆ F̃(Ω−1φ̃(t, x̃(0), d̃(·))), ∀ t ∈ T . In
particular, for t = τ̄ we have, Ẽ(τ̄) = E(τ̄) (thanks to
the fixed point condition and definition of Ẽ) and therefore,
by exploiting φ̃(t, x̃(0), d̃(·))) = φ(t, x̃(0), d(·)) we see that
F̃(E(τ̄)) ⊆ F̃(Ω−1φ(τ̄ , x̃(0), d(·))), proving the claim.

Theorem 3 shows that the set of feasible power demand
signals achieved by the policy (15) at the end of the prediction
horizon T is maximal, with respect to set-inclusion, and in
regard of any other feasible power schedule, when formulated
for an idealized fleet without availability constraints.

The notion of unserved energy is an important measure of
reliability of supply. From the mathematical point of view, in
the context of this paper, we may define, for each policy u(t)
defined over T the following functional:

U(u(·)) :=
∫
T
max

{
d(t)−

∑
j∈N

uj(t), 0
}
dt. (29)

When a demand signal is feasible, one might find u(·) such
that the corresponding unserved energy is zero (and this
is what the discussed policies allow to do), however, for
unfeasible demand signals, it is still desirable to minimize U .
The problem can be formulated as follows:

minu(·),E(·) U(u(·))
s.t. Ė(t) = −u(t) ∀ t ∈ T

E(0) = Ω−1x(0)
0 ≤ uj(t) ≤ P̄j ∀ t ∈ T , ∀ j ∈ N

E(t) ≥ 0 ∀ t ∈ T
uj(t) = 0 ∀ t /∈ Aj , ∀j ∈ N .

(30)

The solution to problem (30) can be found by considering an
augmented demand signal d̃ for a fleet with full availability and
suitably augmented initial time-to-discharge x̃(0). Consider
the modified cost functional:

Ũ(ũ(·)) :=
∫
T
max

{
d̃(t)−

∑
j∈N

ũj(t), 0
}
dt, (31)

where d̃ is defined according to (22). Its minimization disre-
garding partial availability constraints can be formulated as:

minũ(·),Ẽ(·) U(ũ(·))
s.t. ˙̃E(t) = −ũ(t) ∀ t ∈ T

Ẽ(0) = Ω−1x̃(0)
0 ≤ ũj(t) ≤ P̄j ∀ t ∈ T , ∀ j ∈ N

Ẽ(t) ≥ 0 ∀ t ∈ T .

(32)
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Previous results (see [6]) show that Problem (32) can be solved
through a GGDDF policy. Our main result in this respect is
to connect the optimal solution of (30) to that of (32).

Theorem 4. Consider the optimisation problems in (30) and
(32) where the augmented demand d̃ is defined according to
(22) and the initial condition x̃(0) fulfils x̃j(0) = xj(0) +
λ̄jµ(T \Aj) for some fixed point λ̄ of Λ(·). Then, the minimum
value of unserved energy for (30) equals the minimum of (32).

Proof. As a first step it is useful to remark that minimising
unserved energy can be equivalently formulated as:

minu(·),E(·) −
∑

j∈N min{E(τ̄), 0}
s.t. Ė(t) = −u(t) ∀ t ∈ T

E(0) = Ω−1x(0)
0 ≤ uj(t) ≤ P̄j ∀ t ∈ T , ∀ j ∈ N

uj(t) = 0 ∀ t /∈ Aj , j ∈ N ,
d(t) =

∑
j∈N uj(t)

(33)

where [0, τ̄ ] = T . To see this, notice that any feasible u(·),
and associated E(·) of (33) can be modified as:

ûj(t) =

{
uj(t) if Ej(t) ≥ 0
0 if Ej(t) < 0.

Hence, the corresponding Êj(t) fulfills, Êj(t) ≥ 0 for all
t ∈ T . Moreover:

U(û) =
∫
T max{d(t)−

∑
j∈N ûj(t), 0} dt

=
∫
T d(t)−

∑
j∈N uj(t) + [ûj(t)− uj(t)] dt

=
∑

j∈N
∫
{t∈T :Ej(t)<0} −uj(t) dt

=
∑

j∈N
∫
{t∈T :Ej(t)<0} Ėj(t) dt

= −
∑

j∈N min{Ej(τ̄), 0}

Hence, any feasible pair u(·), E(·) of (33) maps to a feasible
pair of (30), whose unserved energy coincides with the cost
of (33). Hence, the minimum of (30) is less or equal than
the optimum of (33). Conversely, under Assumption 1, we see
that any optimal u⋆(·) of (30) can be made into a feasible
ǔ of (33) by injecting some complementary power ∆u so as
to achieve for the modified signal ǔ = u⋆ + ∆u, d(t) =∑

j ǔj(t). Notice that, for the corresponding optimal solution
E⋆ it holds necessarily E⋆

j (τ̄) = 0 for all devices j such that
there exists t ∈ T with d(t) >

∑
j∈N u⋆

j (t). Because of this
latter constraint, the corresponding Ě signal fulfills,

−
∑

j∈N min{Ěj(τ̄), 0} ≤ −
∑

j∈N Ěj(τ̄)− Ej(τ̄)

=
∑

j∈N
∫
T ∆u⋆

j (t)dt

=
∫
T d(t)−

∑
j∈N u⋆

j (t)dt = U(u⋆).

Hence, by feasibility of ǔ and Ě for problem (33) the optimal
cost of (33) is less or equal than the optimal cost of (30).
Similarly, for fleets without partial availability constraints,
problem (32) is equivalently written as:

minũ(·),Ẽ(·) −
∑

j∈N min{Ẽj(τ̄), 0}
s.t. ˙̃E(t) = −ũ(t) ∀ t ∈ T

Ẽ(0) = Ω−1x̃(0)
0 ≤ ũj(t) ≤ P̄j ∀ t ∈ T , ∀ j ∈ N .

d̃(t) =
∑

j∈N ũj(t)

(34)

Notice that (33) and (34) relax the positivity constraint on
E and Ẽ respectively. In its place, an equality constraint is
added, forcing the total power delivered to meet aggregate
demand. In this way, input signals that push charge levels to
negative values are still regarded as feasible, but their impact
is accounted for in the cost functional. The result is proved
through a series of inequality. Consider the subset of signals
ũ achieved through the following construction:

ũj(t) =

{
uj(t) if t ∈ Aj

Kj(t, φ(t, x̃(0), d(·)), d(t)) if t /∈ Aj .
(35)

where u is the new decision variable. The minimum value of
(33) (with respect to u) over this restricted class of signals is
greater or equal to the minimum value of unserved energy in
(32). Furthermore, since the GGDDF policy is optimal for (32)
and results in an optimal input policy ũ∗

j which fulfils ũ∗
j (t) =

Kj(t, φ(t, x̃(0), d(·)), d(t)) for t /∈ Aj , the minimum of (33)
with respect to the restricted class of signals is equal to the
minimum value of unserved energy in (32). On the other hand,
because of the fixed point condition, the amount of energy
delivered by any ũ parameterized according to (35) outside the
availability windows exactly matches the extra energy allowed
to devices at time 0. Hence, E(τ̄) = Ẽ(τ̄), when E(t) is
discharged according to equation Ė = −u, and uj(t) = 0 for
t /∈ Aj . Hence the minimum value of (33) over the restricted
class of ũ signals equals the minimum value of (34).

When avoiding energy curtailment is to be prioritized, an-
other functional of interest is the so called time-to-failure. For
each dispatch policy u of aggregate demand d(·) this is defined
as the first time some battery state-of-charge becomes negative.
Formally, Tf (x(·)) := inf{t ∈ T : minj∈N xj(t) < 0}.

Our aim is to solve the following optimisation problem:

τ∗ := maxu(·),x(·) Tf (x(·))
s.t. x(0) = x0

ẋ(t) = −Ωu(t), ∀ t ∈ T
0 ≤ uj(t) ≤ P̄j , ∀ t ∈ T ,∀ j ∈ N

uj(t) = 0 ∀ t /∈ Aj , ∀ j ∈ N
d(t) =

∑
j∈N uj(t).

(36)

For fleets without availability constraints this can be max-
imized through the use of a GGDDF policy. However, it is
shown in the following Section that the naive application of
this same policy does not achieve maximisation of time-to-
failure. We propose an iterative procedure to compute the
optimal time-to-failure and the associated dispatch.

1) Let T = [0, τ0 := τ̄ ]; Let k = 0;
2) Repeat:

• Compute λ̄k, fixed point of Λ, over window [0, τk];
• Apply GGDDF policy from x̃(0). Let x̃k be corre-

sponding state evolution
• τk+1 := Tf (x̃k); increase k;

Our main result is the following:

Theorem 5. The iteration defined above converges to the
optimal time-to-failure, i.e., limk→+∞ τk = τ∗, as in (36).
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VI. NUMERICAL EXAMPLES

The proposed dispatch algorithm for heterogeneous devices
is applied to numerical case studies. The computational tasks
were implemented using MATLAB R2019a and solved by the
routine fsolve or fmincon, on a computer with 2-core 3.50GHz
Intel(R) Xeon(R) E5-1650 processor and 32GB RAM.

A. Feedback policy
Next, the proposed feedback policy is tested on a fleet of 500

devices. A time interval of 24 hours, from 12 : 00 h to 12 : 00
h of the next day, is considered. For every device j ∈ N =
{1, 2, · · · , 500}, the rated power P̄j is set to the same value
P̄j = 1 KW. The initial time-to-discharge xj(0) (initial energy
Ej(0)) follows a normal distribution with mean µE = 8 kWh
and standard deviation σE = 1.5 kWh. It is assumed that each
device can discharge only within a continuous time interval
[tj , tj + dj ] h, where tj and dj follow normal distributions,
with the following mean and standard deviation: µt = 18 :
00 h, σt = 1 h, µd = 10 h, σd = 2 h.

To provide a clearer demonstration, the boundaries of
availability windows are chosen as integers and we consider
piecewise constant aggregate demand signals with integer
switching time instants. The calculation of fixed λ̄ has been
completed in about 30 minutes. Table I presents how the
computational time for λ̄ changes with respect to the number
of devices in the fleet. It is observed that the time to obtained
the fixed λ̄ is growing approximately as N4, thus exhibiting
good scalability properties. When the proposed approach is
adopted into the receding horizon framework, the convergence
of λ̄ will be faster because a warm start is available if there is
no significant mismatch between the realisation and prediction.
Moreover, in real-world applications, more powerful machines
can further reduce the computational time and easily perform
the algorithm on larger number of devices.

TABLE I
COMPUTATIONAL COMPLEXITY OF SOLVING THE FIXED λ̄

Device number 10 50 100 250 500

Computation time (min) 1× 10−4 0.002 0.05 1.51 30.13

Fig. 2.a shows the aggregate availability, viz.
∑

j:t∈A|
P̄j

and required demand profile. This demand is feasible since
the auxiliary time-to-discharge of all devices, in Fig. 2.b&c,
are non-negative. Some representative examples of individual
power dispatch signals are shown in Fig. 3. Their availability is
displayed with a green area and individual discharging power
profiles are decided according to the ranking of auxiliary
time-to-discharge which is presented in Fig. 2.b&c. When the
demand d(t) = 0 before 16 : 00 h and after 11 : 00 h, all
devices have a constant time-to-discharge. If the demand is
positive, higher time-to-discharge devices are prioritized for
discharging with P̄ , medium time-to-discharge devices are
discharging at a fraction of rated power, and lower time-to-
discharge devices are preserving energy for later use.

B. Minimum unserved energy vs. maximum time-to-failure
We consider a smaller number of devices N = 20 with

parameters of energy and partial availablity constraints follow-

Fig. 2. a) Available aggregate power and a feasible demand profile; b) Time-
to-discharge for feasible demand profile with augmented energy; c) Time-to-
discharge for feasible demand profile without augmented energy.

Fig. 3. Energy profiles E(t) for different storage devices (subscript i is
neglected), together with availability interval A, discharging profiles u(t).

ing the same probability density functions as in Section VI-A.
The maximum aggregate availability of these devices and the
required demand profile are shown in Fig. 4. Numerically, the
aggregate initial energy is

∑
j∈N Ej(0) = 163.25 kWh and

the total energy by the demand profile is
∫
T d(t)dt = 168.05

kWh. As a result, this demand profile is unfeasible due to
insufficient total energy, which leads to the consequence that
some devices finish the discharging task with negative time-
to-discharge according to the policy (15).

Fig. 5 demonstrates the auxiliary and actual time-to-
discharge using two dispatch policies. Over the 24 hours full
time window, the GGDDF policy serves total energy 151.40
kWh, hence, the minimum unserved energy is U(·) = 16.65
kWh. Nevertheless, this policy has a relatively short time-
to-failure, since one device crosses into negative time-to-
discharge at 24 : 30 h on the left-bottom subplot of Fig. 5.

We compare the above scheduling with the policy resulting
from the iteration algorithm corresponding to Theorem 5.
This identifies the discharging schedules for all devices up
to around 4 : 15 h, which is the maximum time-to-failure.
This is significantly larger (approx. 3 : 45 h) than what is
achieved by the previous dispatch. Notice that the total energy
served before this time instant is 149.69 kWh. The considered
example exhibits a significant gap between the time-to-failure
of the original minimum unserved energy schedule and the
maximum time-to-failure achievable. This is in contrast to the
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case of full availability where the GGDDF policy achieve both
maximum time-to-failure and minimum unserved energy.
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Fig. 4. Available aggregate power and an unfeasible demand profile.
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Fig. 5. Time-to-discharge for the unfeasible demand profile.

VII. CONCLUSIONS

This paper solves the optimal dispatch problem for hetero-
geneous fleets of storage devices, subject to partial availabil-
ity constraints and without cross-charging. This significantly
extends previous known results which were limited to fleets
with full availability, [5], [8], [6], [7]. The approach transforms
the problem to one of dispatch of a fleet over the same time-
horizon but in the absence of availability constraints, for some
auxiliary and increased demand signal and correspondingly
increased initial energies (or discharge time). Admissible dis-
patch policies are provided whenever the aggregate demand
signal is feasible and policies maximizing time-to-failure or
minimizing unserved energy are formulated and discussed, for
the case of unfeasible demand.

A characterization of the feasible set of aggregate demand
signals is presented, which may serve as an effective computa-
tional approach to embed flexible demand or coordinated fleet
operation during outages in large scale optimisation problems,
by exactly capturing the degrees of freedom afforded by the
fleet without explicit mention of individual power schedules.
Finally, examples of application of the techniques are pro-
vided for fleets of medium and large size, to demonstrate
the effectiveness and scalability of the approach. Several
open questions remain in this area, particularly related to
more realistic battery models, multi-area dispatch problems
or bidirectional power transfers.

APPENDIX A
PROOF OF LEMMA 1

We prove the lemma by separately considering all the cases
involved in the policy definition.

1) Let i ∈ Nτk , with
∑

h≤k

∑
j∈Nτh

:t∈Aj
P̄j ≤ d. Then

Ki(t, x, d) = P̄i, moreover, Kj(t, x, d) = P̄j for all
j ∈ Nτh with h ≤ k. Hence:∑
h≤k

∑
j∈Nτh

P̄j =
∑
h≤k

( ∑
j∈Nτh

:t∈Aj

P̄j +
∑

j∈Nτh
:t/∈Aj

Kj(t, x, d)
)

≤ d+
∑

j:t/∈Aj

Kj(t, x, d).

By definition of K̃ this implies K̃i

(
x, d +∑

j:t/∈Aj
Kj(t, x, d)

)
= P̄i = Ki(t, x, d).

2) Let i ∈ Nτk with
∑

h<k

∑
j∈Nτh

:t∈Aj
P̄j ≤ d <∑

h≤k

∑
j∈Nτh

:t∈Aj
P̄j . Then Kj(t, x, d) = r(t)P̄j for all

j ∈ Nτk , and Kj(t, x, d) = P̄j for all j ∈ Nτh with h < k.
In addition Kj(t, x, d) = 0 for all j ∈ Nτh with h > k.
As a consequence:∑

h<k

∑
j∈Nτh

P̄j =
∑
h<k

( ∑
j∈Nτh

:t∈Aj

P̄j +
∑

j∈Nτh
:t/∈Aj

P̄j

)
≤d+

∑
h<k

∑
j∈Nτh

:t/∈Aj

P̄j

=d+
∑
h<k

∑
j∈Nτh

:t/∈Aj

Kj(t, x, d)

≤d+
∑

j:t/∈Aj

Kj(t, x, d).

Moreover:

d+
∑

j:t/∈Aj

Kj(t, x, d)

<
(∑

h≤k

∑
j∈Nτh

:t∈Aj

P̄j

)
+

∑
j:t/∈Aj

Kj(t, x, d)

=
(∑

h≤k

∑
j∈Nτh

:t∈Aj

P̄j

)
+

(∑
h<k

∑
j∈Nτh

:t/∈Aj

P̄j

)
+

∑
j∈Nτk

:t/∈Aj

r(t)P̄j

=
(∑

h<k

∑
j∈Nτh

P̄j

)
+

∑
j∈Nτk

:t∈Aj

P̄j +
∑

j∈Nτk
:t/∈Aj

r(t)P̄j

≤
(∑

h≤k

∑
j∈Nτh

P̄j

)
Hence, provided we can show r(t) = r̃(t), we see that,
K̃i

(
x, d+

∑
j:t/∈Aj

Kj(t, x, d)
)

= r̃(t)P̄i = r(t)P̄i =

Ki(t, x, d).
To complete the proof of this case, notice that:

r(t)
( ∑

j∈Nτk

P̄j

)
= r(t)

∑
j∈Nτk

:t∈Aj

P̄j +
∑

j∈Nτk
:t/∈Aj

r(t)P̄j

= r(t)
( ∑

j∈Nτk
:t∈Aj

P̄j

)
+

∑
j∈Nτk

:t/∈Aj

Kj(t, x, d)

= d−
(∑

h<k

∑
j∈Nτh

:t∈Aj

P̄j

)
+

∑
j∈Nτk

:t/∈Aj

Kj(t, x, d)

= d−
(∑

h<k

∑
j∈Nτh

P̄j

)
+

∑
j:t/∈Aj

Kj(t, x, d)

= r̃(t)
∑

j∈Nτk

P̄j
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3) Finally, when i ∈ Nτk and d <
∑

h<k

∑
j∈Nτh

:t∈Aj
P̄j ,

we have Kj(t, x, d) = 0 for all j ∈ Nτh for all h ≥ k. As
a consequence:

d+
∑

j:t/∈Aj

Kj(t, x, d) = d+
(∑

h<k

∑
j∈Nτh

:t/∈Aj

Kj(t, x, d)
)

<
(∑

h<k

∑
j∈Nτh

:t∈Aj

P̄j

)
+
(∑

h<k

∑
j∈Nτh

:t/∈Aj

Kj(t, x, d)
)

≤
(∑

h<k

∑
j∈Nτh

:t∈Aj

P̄j

)
+
(∑

h<k

∑
j∈Nτh

:t/∈Aj

P̄j

)
=
∑
h<k

∑
j∈Nτh

P̄j .

This proves that: K̃i

(
x, d+

∑
j:t/∈Aj

Kj(t, x, d)
)
= 0 =

Ki(t, x, d).

This concludes the proof of the Lemma.

APPENDIX B
PROOF OF THEOREM 2

We show first necessity of condition (25). Let d(·) be a
feasible demand signal. Then there exists uj(·) such that:

1) Total demand constraint:
∑

j uj(t) = d(t) for all t ≥ 0;
2) Power constraint: 0 ≤ uj(t) ≤ P̄j , for all t ≥ 0;
3) Availability constraints: uj(t) = 0 for all t /∈ Aj ;
4) Energy constraint:

∫ +∞
0

uj(t) dt ≤ P̄jxj(0).
Hence, for every W ⊂ [0,+∞) we see the following:∫

W
d(t) dt =

∫
W

∑
j∈N

uj(t) dt =
∑
j∈N

∫
W

uj(t) dt

=
∑
j∈N

∫
W∩Aj

uj(t) dt ≤
∑
j∈N

min{µ(W∩Aj), xj(0)}P̄j .

This completes the necessity proof.
Conversely, let d(·) be unfeasible. Consider the associated

map Λ, as defined in equation (20) and (19). Let λ̄ be a fixed
point of the map (which always exists by Brower’s fixed point
Theorem) and x̂λ̄(0) the associated initial condition. Since d
is unfeasible, the set defined below is non-empty:

Ne = {j ∈ N : φ̃j(sup T , x̂λ̄(0), d̃(·)) < 0},

viz. of batteries which have negative energy at the end of
the considered time-horizon, when the signal d̃ is dispatched.
Equivalently, by virtue of Lemma 2, Ne can be expressed as
Ne = {j ∈ N : φj(sup T , x̂λ̄(0), d(·)) < 0}.

Let uj(t) be defined as:

uj(t) =

{
K(t, φ(t, x̂λ̄(0), d(·), d(t)) if t ∈ Aj

0 if t /∈ Aj

The set Ne can equivalently be expressed as: Ne = {j ∈ N :∫
T uj(t)dt > P̄jxj(0)}, thanks to the fact that λ̄ is a fixed

point of Λ. The following implication is a consequence of the
order-preserving property of the maps φ̃ and φ and of the
definition of K:

∃ i ∈ Ne : ui(t) > 0 ⇒ uj(t) = P̄j ∀ j /∈ Ne : t ∈ Aj

Let W denote the set W =
⋃

j∈Ne
supp(uj). Hence we might

proceed to the following manipulations:∫
W

d(t) dt =

∫
W

∑
j∈N

uj(t) dt

=
∑
j /∈Ne

∫
W

uj(t) dt+
∑
j∈Ne

∫
W

uj(t) dt

=
∑
j /∈Ne

∫
W∩Aj

uj(t) dt+
∑
j∈Ne

∫
T
uj(t) dt

=
∑
j /∈Ne

∫
W∩Aj

P̄j dt+
∑
j∈Ne

∫
T
uj(t) dt

>
∑
j /∈Ne

µ(W ∩Aj)P̄j +
∑
j∈Ne

P̄jxj(0)

≥
∑
j∈N

min{µ(W ∩Aj), xj(0)}P̄j .

This shows that (25) is violated and concludes the proof.

APPENDIX C
PROOF OF THEOREM 5

We first show by induction that τ∗ ∈ [0, τk] for all k ∈ N.
The claim is trivially true for k = 0, given the initialization
τ0. Assume next that τ∗ ∈ [0, τk]. We will show that τ∗ ∈
[0, τk+1]. Let λ̄k be the fixed point of Λ at the k-th iteration
of the algorithm. Consider x̃k(0), the corresponding value of
time-to-discharge with augmented energy proportional to λ̄k.
We denote by x̃k(·) the solution corresponding to a GGDDF
policy for the fleet without availability constraints. It is known
that this solution maximizes time-to-failure, viz.

Tf (x̃k) = maxũ(·),x̃(·) Tf (x̃(·))
s.t. x̃(0) = x̃k(0)

˙̃x(t) = −Ωũ(t), ∀ t ∈ [0, τk]
0 ≤ ũj(t) ≤ P̄j , ∀ t ∈ [0, τk],∀ j ∈ N

d̃k(t) =
∑

j∈N ũj(t).

Moreover, this also equals the maximum time-to-failure for
demand signal d̃ over a restricted class of input policies, viz:

Tf (x̃k) = maxu(·),x̃(·) Tf (x̃(·))
s.t. x̃(0) = x̃k(0)

ũj(t) =

{
uj(t) t ∈ Aj

Kj(t, φ(t, x̃k(0), d̃k), d̃k(t)) t /∈ Aj

˙̃x(t) = −Ωũ(t), ∀ t ∈ [0, τk]
0 ≤ uj(t) ≤ P̄j , ∀ t ∈ [0, τk],∀ j ∈ N

d̃k(t) =
∑

j∈N ũj(t).

Since the energy delivered by each device outside Aj in the
above optimisation is equal to the additional energy provided
at time 0, we see that x̃(t) ⪰ x(t) where xj denotes the state
evolution for input uj (which mathces ũj in Aj but is zero
otherwise). Hence, the following inequality holds:

Tf (x̃k) ≥ maxu(·),x(·) Tf (x(·))
s.t. x(0) = ΩE(0)

ẋ(t) = −Ωu(t), ∀ t ∈ [0, τk]
0 ≤ uj(t) ≤ P̄j , ∀ t ∈ [0, τk],∀ j ∈ N

uj(t) = 0 ∀ t /∈ Aj ∀ j ∈ N
d(t) =

∑
j∈N uj(t).

(37)
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The maximisation problem in (37), however, yields τ∗ due
to the induction hypotesis: τ∗ ∈ [0, τk]. Hence, τk+1 =
Tf (x̃k(·)) ≥ τ∗. Notice that τk is, by construction, a non-
increasing and lower-bounded sequence. Hence it admits
a limit τ̄ . By the previous inequality, we see that τ̄ =
limk→+∞ τk ≥ τ∗. We need to show that equality holds.

By definition of x̃k, we have x̃k(t) ⪰ 0 ∀ t ∈ [0, τk+1].
Let kn be any divergent sequence such that x̃kn

(0) converges
to some initial condition x̃∞(0) as n → +∞. Accordingly
x̃kn

(·) will converge to signal φ(t, x̃∞(0), d(·)) and d̃k(·) will
converge to some limit d̃∞(t) fulfilling definition d̃∞(t) =
d(t) +

∑
j:t/∈Aj

Kj(t, φ(t, x̃∞(0), d(·)), d(t)). In particular,
taking limits along subsequence kn yields x̃∞(t) ⪰ 0 for
all t ∈ [0, τ̄ ]. Hence d̃∞ is feasible over [0, τ̄ ]. Clearly
Λ(λ̄∞) = λ̄∞ and therefore, by Theorem 1, d is feasible for
the fleet with partial availability constraints over the interval
[0, τ̄ ]. Hence τ⋆ ≥ τ̄ . Since we already proved the opposite
inequality, τ∗ = τ̄ which completes the proof.
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