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ABSTRACT 

 

 The torsional capacity of R/C beams is considered in this paper. On the basis of Batti 

and Almughrabi theory, a new general formula is proposed. Accordingly to their theory, this 

formula takes into account that stirrups influence the concrete torsional capacity because of 

their involvement in the aggregate interlock. A large number of previous test results, available 

in the literature (87 beams), has been considered to determine a few coefficients, by 

minimizing the coefficient of variation of the experimental-to-theoretical torsional capacity 

ratio. The obtained contributions of concrete and reinforcement on torsional capacity have 

both a sound physical meaning, which was not the case of the original Batti and Almughrabi’s 

expressions. The theoretical results obtained with the proposed formula have been compared 

with the torsional capacities provided by other already available formulae and by some design 

codes. It is shown that the proposed formula is very efficient, since the computed capacities 

are very close to the test results and - on the whole - much closer than other well known 

formulae. 

 

 

 

                                                           
1 Full Professor, Department of Civil Engineering - University of Udine 
2 Assistant Professor, Department of Civil Engineering - University of Udine 
3 Civil Engineer, Department of Civil Engineering - University of Udine 
4 PhD Engineer, Department of Civil Engineering - University of Udine 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53314053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 242  
 

1. INTRODUCTION 

 

The first theory for calculating the ultimate strength of reinforced concrete members 

subjected to torsion was developed by Rausch (1929). In this theory a rectangular section 

member acts as a tube, in the sense that the concrete core gives no significant contributions to 

the ultimate strength. Each panel of the tube acts as a plane truss, where concrete struts are the 

diagonal members (assumed to be inclined at 45-deg with respect to the longitudinal axis), 

while the longitudinal reinforcement and the stirrups are the horizontal and vertical members 

of the truss respectively. Globally it is a spatial truss model. By imposing the equilibrium 

conditions, Rausch proposed the equation for the ultimate moment Tu: 

s

fAA yttoh2Tu =  (1) 

where Aoh is the area enclosed by the centerline of the outermost closed hoops; At is the 

sectional area of one leg of a closed stirrup; fyt is the yield stress of the stirrup and s is the 

stirrup spacing. 

Rausch contribution was fundamental and still provides the basic formulation for some 

codes. Eq. 1, however, significantly overestimates the actual torsional strength. For this 

reason many scientists tried to modify Rausch’s formula. Andersen (1935), first, and then 

many others (Cowan 1950, Hsu 1968a), introduced a “reinforcement efficiency factor”, less 

than 1, which multiplies the coefficient 2 appearing in Eq. 1. A second approach to modify 

Eq. 1 was to reduce area Aoh: Lampert and Thurlimann (1968, 1969), for example, proposed 

to replace the area Aoh with the area bounded by the lines connecting the longitudinal bars 

center. Moreover they introduced a variable-angle truss model (< 45-deg) for the concrete 

struts. 

Several design codes (ACI 2002; Eurocode 1992; Italian Code 1996) base their 

torsional capacity formulae on the above-mentioned simplified models. 

Collins and Mitchell (1980), proposed to evaluate the depth of the concrete struts with 

an expression based on equilibrium equations; however, they considered as ineffective the 

concrete cover, with no clear reasons. 

Anyway, to make the proposed theories closer to the experimental results, some 

arbitrary assumptions have to be introduced in all the above-mentioned cases, since the actual 

torsional capacity is smaller than those provided by the various theories, because of two 

coexisting effects. The first is a kinematical one due to the fact that concrete struts are not 

simply compressed, but they are subjected to bending (Lampert and Thurlimann, 1968 and 



 243  
 

1969): the maximum compressive stress is greater than the average one. The second aspect is 

the softening of concrete in compression; this phenomenon was firstly observed by Robinson 

and Demorieux (1972): they studied the behavior, under compression, of concrete panels 

reinforced with transversal reinforcement placed at various angles. When a tensile force acts 

in the reinforcement, the concrete compressive strength reduces significantly. Vecchio and 

Collins (1981) proposed  a stress-strain curve for the “softened” concrete, where maximum 

stress and the corresponding strain are scaled down with respect to the original “non-

softened” curve. The fundamental parameter characterizing the model is the softening 

coefficient ζ (<1). 

Hsu and Mo (1985) proposed a theory which at the same time takes into account 

equilibrium, kinematic compatibility (bending of concrete struts) and concrete softening. 

They set up a model which provides eight non linear equations in nine unknown quantities. 

Keeping one of them as a parameter, the solution of the system gives each single point (and in 

particular the ultimate one) of the diagram T-Θ, where Θ is the angle of torsion. The ensuing 

curves agree satisfactorily with experimental curves, except before first cracking, since the 

initial resisting mechanism is different. The solution of the non linear system is difficult. For 

this reason Hsu (1990) proposed a simplified model, or, alternatively, a unified simplified 

formula. 

Another approach to study the torsional behavior of R/C beams is to model concrete 

members with finite elements (Ngo and Scordelis 1967, Connor and Sarne 1975). Bhatti and 

Almughrabi (1996) studied the problem by means of a three-dimensional nonlinear finite-

element model. They were able to take into account a number of relevant phenomena usually 

neglected: dowel action, bond between concrete and steel and aggregate interlock. On the 

basis of their parametric analyses a simple formula for the ultimate torsional capacity was 

proposed. 

In the present paper, on the basis of Bhatti and Almughrabi model, a new formula is 

worked out. This formula is used to compare the computed capacity with the tests on 87 

beams. 

The proposed-model reliability is compared also with the design codes, as well as Hsu’s 

simplified model and approximate formula, and Bhatti and Almughrabi’s model. Some 

fundamental features of the cited codes and models are preliminarily presented. 
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2. CODE PROVISIONS AND EXISTING MODELS 

 

2.1 ACI Building Code  
 

 The American Concrete Institute Building Code (2002), makes use of the classical 

three-dimensional truss model, with variable inclination of concrete struts. Torsional capacity 

of the concrete section is  

 

c
h

oh
cA f

p

A
T

2

397.1 φ=             (S.I. units) (2) 

 
where fc is concrete ultimate strength, ph the length of the centerline of one closed stirrup and  

φ the strength reduction factor equal to 0.75. 

 Torsional capacity resisted by transverse reinforcement is 

 

            θctg
s

fAA
T ytto

tA

2
=  (3) 

 
The inclination θ shall not be taken smaller than 30 deg, nor greater than 60 deg. It is 

possible to take θ equal to 45 deg for non prestressed members. Ao is the area enclosed by the 

centerline of the shear-flow path. If not determined by analysis, for example by means of 

Hsu’s (1990) approximate model, Ao can be taken equal to 0.85Aoh. 

The torsional capacity TminA for rectangular beams is defined as the minimum between 

the moments expressed by Eqs. 2 and 3: 

 
TminA  = min (TcA, TtA) (4) 

 

 

2.2 Eurocode 2  
 
 

Like ACI Code (2002), Eurocode 2 (1992) makes use of the three-dimensional truss 

model with variable inclination θ. The parameter θ and the thickness of the shear flow zone t 

must comply with the following limitations: 

 

1.0 < ctg θ < 2.0 (5) 

 



 245  
 

2c < t < A/u (6) 

 
where A and u are the cross sectional area and the perimeter of the concrete rectangular 

section respectively, and c is the thickness of the concrete cover. Assuming that both 

transversal and longitudinal reinforcements are at yielding, the inclination θ is determined by 

the equilibrium condition: 

 

sfA

ufA
tg

yldl

oytdt=θ2  (7) 

 
where fyld and ftyd are the yield design stresses, Al is the total area of longitudinal bars and uo is 

the length of the centerline of the shear flow. The torsional capacity resisted by the concrete 

section is  

 

θθ
ν

tgcotg

tAf
T ocd

Rd +
=   2

1  (8) 

 
where fcd is concrete design strength, and ν is the concrete strength reduction factor: 

 








 −=
200

7.07.0 cfν  < 0.35 (9) 

 
For rectangular sections Ao and uo have the following expressions: 

 
2

2
tu

t
AAo +−=  (10) 

 
tuuo 4−=  (11) 

 
 The torsional capacity resisted by transverse reinforcement is 

 

s

fA

u

fA
AT ytdt

o

yldl
oRd 22 =  (12) 

  
The torsional capacity TminEC2 for a rectangular beam is defined as the minimum of the 

moments expressed by Eqs. 8 and 12: 

 
TminEC2  = min (TRd1, TRd2) (13) 



 246  
 

2.3 Italian Code  

 

Italian Code (D.M. 9.01.1996) uses the classical three-dimensional truss model, with 

45° concrete-strut inclination. The torsional capacity resisted by each member of the truss are 

the following: 

- Concrete struts: 

 

cddcI ftAT 22

1=  (14) 

 
- Longitudinal steel: 

 

lyd
l

lI f
u

AA
T

2

22
=  (15) 

 
- Transversal steel: 

 

tyd
t

tI f
s

AA
T 22

=  (16) 

 
where A2 is the area bounded by a conventional centerline of the shear flow such that the 

thickness td of the shear flow zone is b1/6 (b1 is the diameter of the circle inscribed in the 

centerline connecting the centroids of the longitudinal bars) and u2 is the length of the above-

mentioned centerline. 

 The torsional capacity TminIC for a rectangular beam is defined as the minimum of the 

moments expressed by Eqs. 14, 15 and 16: 

 
TminIC = min (TcI, TlI, TtI) (17) 

 

 

2.4  Hsu approximate models 

 

Hsu (1990) proposed an approximate model, which simplifies the determination of the 

torsional capacity, with respect to his original theory (Hsu and Mo 1985). The most important 

hypothesis consists in setting the ratio of  the concrete average stress to peak stress in the 

stress block equal to 0.8. This simplification provides a non linear system with three 
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unknowns: the thickness of the shear flow zone t, the angle of inclination of the concrete 

struts θ  and the softening coefficient ζ : 

 

θθ
ζ

22
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cossinu
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o=   (18) 
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+
=θ2cos  (20) 

 

 The first equation expresses a kinematic compatibility condition, while the second and 

the third are equilibrium equations. The system of Eqs. 18, 19 and 20 can easily be solved by 

a simple trial and error procedure: assume an initial value for t; calculate Ao and uo by Eqs. 10 

and 11; compute ζ and θ  from Eqs. 19 and 20 respectively. Substituting ζ and θ into Eq. 18 

gives t. If the resulting t is close enough to the initial value, then a solution is found; otherwise 

choose another t and repeat the cycle. Once a solution is obtained, the torsional capacity can 

be evaluated by the following equilibrium equation: 

 

θctgA
s

fA
o

ytt2THit =   (21) 

 
where the suffix “it” reminds that the value is obtained by means of an iterative process.  

For design purposes, Hsu (1990) introduced further approximations to work out a 

simplified direct expression for the torsional capacity Tu; in particular the thickness of the 

shear flow zone can be approximately estimated by 

cAf
t uT4

=  (22) 

 
and, if t is small, Ao can be evaluated from Eq. 10, neglecting the term t2: 
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2

u
tAAo −=  (23) 

 
If θ is taken equal to 45 deg, Eq. 21 (with Tu instead of THit) and Eqs. 22 and 23 provide 

the torsional capacity TH 

 

ufAsAf

AffA

yttc

tytc

4

2
T

2

H +
=  (24) 

 

One should observe that ACI Code suggests the use of Eq. 21 or Eq. 24 instead of Eq. 3, 

when a greater accuracy is requested. 

 

 

2.5   Bhatti  and Almughrabi Model 

 

 Bhatti and Almughrabi (1996) showed by means of a numerical procedure that 

aggregate interlock along cracked sections contributes significantly to torsional capacity. This 

conclusion agrees with the tests made by Mattock (1968), who found that the torsional 

capacity of a longitudinally reinforced beam (with no stirrups), subjected to torsion and 

flexure, is approximately one-half the torsional capacity of the uncracked beam. 

 Bhatti and Almughrabi’s (1996) model is based on the equations of the old ACI 

Building Code (1989) for rectangular sections. The torsional capacity was expressed as the 

sum of two contributions, the first, due to concrete (Tc) and the second, due to the 

reinforcement (Ts): 

 

hb
fc 2

c 15
T =                            (S.I. units) with b ≤ h (25) 

s

fA
hb ytt

11tsT α=  with b1 ≤ h1 (26) 

 
where b1 and h1 are the dimensions of one closed stirrup and the efficiency factor for the 

reinforcement αt has the following expression: 
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Bhatti and Almughrabi modified the contributions Tc and Ts in Eqs. 25 and 26, on the 

basis of their numerical analyses on 7 beams. The main reasons why they did so, are: 

- Tc given by Eq. 25 doesn’t depend on the steel percentage ρs and on the aspect ratio h/b, 

while the numerical tests show that these parameters have some influence on concrete 

contribution. An increase of ρs produces an increase in aggregate interlock forces, while 

the larger the aspect ratio the larger the contribution to torsional strength, because of the 

increasing level arm concerning aggregate interlock. 

- Ts as provided by Eq. 26, is a linear function of the volumetric percentage of transverse 

steel ρs, while the numerical tests suggest a second power dependence (ρs
2). 

For these reasons, they proposed a new expression for Tc and Ts: 

 
 

cBcBcBc fhbT 2
,,

2
, 10643.6 βα−⋅=             (S.I. units) (28) 

 

s

fAhb
T tyt

BsBtBs
11

,,, βα=  

 (29)  
where ρs, βc,B, βs,B and αc,B have the following formulations: 

 

shb

Ahb t
s

)(2 11 +=ρ   (30) 

βc,B = 0.575 ρs
2 − 0.486 ρs + 1.238 (31) 

βs,B = − 0.198ρs
2 + 0.274 ρs + 0.789 (32) 

αc,B = 0.24 h/b + 0.62 (33) 

 
As for αt,B  (Eq. 27) the expression found in ACI (1989) is adopted. 

 The torsional capacity is: 

 

TBA = Tc,B + Ts,B (34) 
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3. BASIS OF THE PROPOSED MODEL 

 

The new idea of Bhatti and Almughrabi is that the volumetric percentage of stirrups ρs 

influences the ultimate capacity not only directly (since the stirrups are members of the space-

truss model) but indirectly as well. This is taken into account by means of the function βc,B in 

Eq. 28, making the concrete contributions for the same cross-section different if steel ratios 

are different.  

However, some comments have to be made on the functions βs,B (Eq. 32) and βc,B (Eq. 

31) proposed by Bhatti and Almughrabi. The plots of these functions is shown in Fig. 1.  

  

 

 

Fig. 1 – βc,B and βs,B functions versus transverse steel percentage. 

 

 

Firstly, βs,B assumes negative values for ρs greater than 2.805. A negative contribution 

of the stirrups to the torsional capacity has no physical meaning. 

Considering now βc,B, it can be observed that the increase of concrete contribution 

with a positive concavity appears unreasonable. With regard to this point Hsu (1968b) showed 

that the cracking moment Tcr increases linearly with the total volume percentage 

reinforcement and Mattock (1968) showed that this moment for a longitudinally-reinforced 

beam (with no stirrups), is approximately twice as much as the concrete torsional contribution 

after cracking. It follows that Tc and βc,B should be linear functions of ρs, as Tcr does (Hsu 

1968b). A possible concavity, if any, would be negative to explain how too much 
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reinforcement can decrease concrete strength because of the many discontinuities the steel 

introduces in the concrete. 

Both the unrealistic βs,B - ρs and βc,B - ρs relationships introduced by Bhatti and 

Almughrabi, are likely due to statistically-inconsistent tests considered by these authors: 

Eq. 31 is in fact a best-fit function based on 4 numerical experiments, while Eq. 32 is a best-

fit expression based on 7 numerical experiments. It can be moreover observed that the 

coefficients appearing in each of the functions αc,B, βc,B and βs,B (Eqs. 31, 32 and 33) have 

been determined independently from the others. Finally the torsional capacity computed by 

means of Eq. 34 has been compared only with 19 experimental tests. 

In the model presented in this paper, the torsional capacity is still assumed to be due to 

two contributions similar to those introduced by Bhatti ed Almughrabi (Eqs. 28 and 29): 

 

cccc fhbT 2210643.6 βα−⋅=                   (S.I. units) (35) 

 

s

fAhb
T tyt

sts
11βα=  (36) 

 

where 

 
αt = k1 + k2 b1/h1 (37) 

βs = k3 ρs
2 + k4 ρs + k5 (38) 

αc = k6 b/h + k7 (39) 

βc = k8 ρs
2 + k9ρs + k10 (40) 

 

The function αt, which Bhatti ed Almughrabi borrowed from Hsu (1968a), is here 

assumed as a function to be determined. This assumption is justified by the fact that Bhatti ed 

Almughrabi introduced a new function αc depending on the aspect ratio and consequently the 

function αt, originally proposed by Hsu, cannot be left unchanged. 

The ultimate torsional capacity is 

 
Tu = Ts + Tc (41) 
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Now, in agreement with Bhatti ed Almughrabi, the transverse volume percentage ρs  is 

assumed to influence both Tc and Ts. For this reason, a single statistical regression on the 

available data should be performed, instead of three separate statistical regressions as Bhatti 

and Almughrabi did. The optimization process made here minimizes the coefficient of 

variation (COV) of the ratios between the experimental torsional capacity Texp and the 

proposed one Tu,pr. This process has been performed taking into account the experimental 

tests made on 87 rectangular beams subjected to torsion. 

 From the optimization process the following values have been obtained: 

 
k1 = 0.366   k2 = − 0.0855  k3 = − 0.237 

 k4 = 1.651  k5 = −0.373   k6 = 0.0737 

 k7 = 0.926  k8 = − 0.914  k9 = 2.986 

 k10 = 1.319 

 
The following formula for the ultimate torsional moment is finally proposed 

 
Tu,pr = Tc,pr +  Ts,pr (42) 

 
where  

          

Tc,pr = 6.643 10-2 αc,pr βc,pr b
2h cf  (43) 

 

s

fAhb
T ytt

prsprtprs
11

,,, βα=  (44) 

 
with  

 
αt,pr = 0.366 − 0.0855 b1/h1 (45) 

βs,pr  = − 0.237 ρs
2 + 1.651 ρs − 0.373 (46) 

αc,pr  = 0.0737 b/h + 0.926 (47) 

βc,pr  = − 0.914 ρs
2 + 2.986ρs + 1.319 (48) 
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Before analyzing the reliability of the proposed model, the obtained functions βs,pr (Eq. 

46) and βc,pr (Eq. 48) are discussed. The curves βs,pr – ρs and βc,pr – ρs are plotted in Fig. 2. 

 

 
 

Fig. 2 - βs,pr and βc,pr functions versus transverse steel percentage. 
  

Some physical discrepancies previously observed for the analogous Bhatti ed 

Almughrabi functions are no longer present. As for βs,pr, it can be observed that it is always 

positive and increases with ρs. 

 Regarding to the function βc,pr, the unexpected βc,pr decrease beyond the maximum it 

assumes for ρs = 1.63 needs an explanation. In order to do this, the torsional moment at first 

cracking Tcr has been considered, because of the great influence of concrete on its value. 

Before cracking the 3-D truss mechanism is not active. The experiments made by Hsu 

(1968a) are now considered, because the values of Tcr are reported only in his paper. The non-

dimensional cracking moment tcr has the following expression: 

 

 
c
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fhb

t
2

crT
=  (49) 

 

The possible dependence of tcr on ρs is shown in Fig.3. The interpolating function drawn on 

the diagram evidences that experimental variation of tcr, which is similar to that of βc,pr 

because of Eq. 43 and the previous discussion on Tcr, shows a concavity analogous to that 

obtained with Eq. (48).  
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Fig. 3 – Experimental non-dimensional cracking moment versus transverse steel percentage. 
 
 
 
4. MODEL RELIABILITY 
 

In this chapter the results obtained by means of the proposed formula (Eq. 42) are 

compared with the formulae adopted by various design codes and developed by the 

previously-mentioned authors. The tests concerning 87 beams collected from different 

sources have been taken into account (Hsu 1968a; Nielsen 1983; Nielsen 1984; Narayanan 

and Palanjian 1986; Karayannis and Chalioris 2000; Ashour et al. 1999; Rasmussen and 

Baker 1995; Csikós and Hegedûs 1998). 

For each beam the torsional capacity has been computed with the seven expressions 

mentioned earlier in this paper, and the experimental-to-computed torsional capacity ratios 

have been calculated. For each expression with reference to the 87 tests, the average (AVG), 

the standard deviation (STD) and the coefficient of variation (COV = STD/AVG) of these 

ratios have been computed. The experimental-to-computed torsional capacity ratio versus the 

volume percentage of transverse reinforcement are shown for ACI Code (2002), Eurocode 2 

(1992), Italian Code (1996), Hsu (1990) iterative formulae, Hsu (1990) direct formula, Bhatti 

and Almughrabi (1996) formula and proposed formula in Figs. 4, 5, 6, 7, 8, 9 and 10 

respectively. The AVG and COV values are also reported in the same Figures. The horizontal 

line through 1 in the ordinate axis represents the perfect correspondence between testing and 

modeling. So the closer the points to this line, the more accurate the torsional capacity 

prediction. The thinner the width of the strip including the points the greater the prediction 

uniformity. 
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Fig. 4 - Experimental-to-computed torsional capacity ratio (ACI 2002). 

 
 

Fig. 5 - Experimental-to-computed torsional capacity ratio (Eurocode 2, 1992). 
 

 
 

Fig. 6 - Experimental-to-computed torsional capacity ratio (Italian Code, 1996). 
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Fig. 7 - Experimental-to-computed torsional capacity ratio (Hsu, iterative method, 1990) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 - Experimental-to-computed torsional capacity ratio (Hsu, direct formula, 1990) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 - Experimental-to-computed torsional capacity ratio (Batti and Almughrabi, 1996) 
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Fig. 10 - Experimental-to-computed torsional capacity ratio (proposed formula)  
 

  

 The average values and the coefficient of variation, are shown in Table 1. It appears 

that the proposed formula is the most efficient for the prediction of the torsional capacity, 

since it provides the lowest COV. The proposed formula is even more efficient then Hsu 

(1990) iterative method.  

 

 AVG COV 
Aci Code (2002) 1.880 0.333 
Eurocode  (1992) 1.369 0.225 

Italian Code (1996) 2.685 0.430 
Hsu iter. (1990) 0.914 0.227 

Hsu direct (1990) 0.990 0.237 
Bhatti and Al. (1996) 1.184 0.290 

Proposed formula 1.024 0.152 

Tab. 1 – Comparison of results. 

 
 
 
 
5. CONCLUSIONS 

 

The many test results discussed in this paper on R/C beams with rectangular cross 

section subjected to pure torsion, and the proposed model lead to the following conclusions: 

1. The torsional capacity of R/C beams can be predicted with good accuracy and 

uniformity (COV=0.152) by means of a direct expression including the transverse-

steel percentage ratio. 
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2. The proposed expression, based on Batti and Almughrabi model, consists of two 

contributions, the first from the concrete and the second from the reinforcement; the 

formulation of both expressions have a sound physical meaning, which was not the 

case of the original expressions. 

3. Among the design codes considered in this paper, Eurocode 2 (1992) provides the 

more consistent (COV=0.225) evaluation of the experimental results, while the Italian 

Code (1996) is extremely conservative. 
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APPENDIX II – RESISTENZA TORSIONALE DI TRAVI IN CAL CESTRUZZO 

ARMATO A SEZIONE RETTANGOLARE 

 

In questo lavoro viene studiata la resistenza ultima di travi in calcestruzzo armato a 

sezione rettangolare sottoposte a sollecitazione puramente torsionale. 

Il primo fondamentale contributo scientifico nel campo della torsione per elementi in 

c.a. è dovuto a Rausch (1929) che estese al caso torsionale lo schema a traliccio piano già 

introdotto in precedenza per il taglio. Tutti i successivi miglioramenti (angolo di inclinazione 

dei puntoni variabile, modifica dell’impronta trasversale del traliccio) non hanno alterato nella 

sostanza lo schema statico descritto basato solamente sull’equilibrio, tant’è che la gran parte 

delle normative attualmente in vigore (tra cui ad esempio l’ACI Building Code 2002, 

l’Eurocode 2 1992 e il D.M. 9.1.1996) fanno ancora riferimento a questo schema. 

Solo i contributi scientifici più recenti propongono modelli di comportamento che 

meglio adattano le previsioni teoriche ai dati sperimentali. Tali modelli tengono conto del 

fatto che i puntoni di calcestruzzo sono sottoposti anche ad una significativa sollecitazione 

flessionale e che la resistenza a compressione del calcestruzzo risulta penalizzata per la 

presenza delle barre d’armatura trasversali sottoposte a forze di trazione (perdita di resistenza 

o “softening” del calcestruzzo). Sulla base di queste considerazioni sono stati elaborati 

modelli molto sofisticati (Hsu and Mo 1985) che, se da un lato conducono a previsioni molto 

precise, dall’altro sono di scarsa utilità pratica per la loro complicata risolubilità. Per questo 

sono stati proposti (Hsu 1990) modelli più semplificati ed anche formule dirette per la 

valutazione del momento torcente ultimo, di cui la normativa statunitense (ACI Building 

Code 2002) consente di tener conto. 

Si deve a Bhatti e ad Almughrabi (1996) l’aver formulato un modello non lineare agli 

elementi finiti che, in particolare, tiene conto di alcuni significativi fenomeni prima trascurati: 

l’effetto spinotto, l’aderenza acciaio-calcestruzzo e l’ingranamento degli inerti. Sulla base di 

un’analisi parametrica, essi hanno proposto una semplice formula per la resistenza torsionale 

ultima. 

Vengono riportate le espressioni di calcolo del momento torcente previste dall’ACI 

Code (2002), dall’Eurocodice 2 (1993) e dalla Normativa Italiana (1996). Viene quindi 

riassunto il modello iterativo semplificato di Hsu (1990), nonché la sua formula diretta 

approssimata. Dopo aver descritto nel dettaglio il modello di Bhatti e Almughrabi (1996), 

vengono messe in luce alcune inconsistenze fisiche presenti nello stesso modello; tali 

inconsistenze riguardano in particolare le funzioni β moltiplicative dei contributi resistenti a 
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torsione del calcestruzzo e dell’acciaio. Inoltre tale modello risulta basato su regressioni 

statistiche poco significative, in quanto molto modesto è il numero di campioni utilizzato. 

Infine, ai fini della determinazione delle funzioni β, gli stessi autori conducono regressioni 

statistiche separate e su campioni diversi, apparentemente senza motivo. 

Il modello proposto parte dall’osservazione che il contributo resistente dovuto alle 

staffe non può risultare negativo e che il contributo resistente dovuto al calcestruzzo non può 

crescere con pendenze sempre maggiori al crescere della percentuale di staffatura. Si è 

ritenuto pertanto di rideterminare una delle due funzioni moltiplicative del contributo delle 

staffe che era stata assunta da Bhatti e Almughrabi (1996) coincidente con quella 

originariamente proposta da Hsu (1968a). Tale assunzione operata da Bhatti e Almughrabi 

non appare in realtà congruente con l’introduzione della funzione moltiplicativa del 

contributo del calcestruzzo legato al  rapporto di forma. 

E’ stato quindi preso in considerazione un campione di 87 prove sperimentali condotte 

da diversi autori e disponibili in letteratura. Dalla regressione statistica mirata alla 

minimizzazione del coefficiente di variazione del rapporto tra il momento torcente resistente 

sperimentale e quello teorico, si è ottenuta la formulazione dei coefficienti e quindi delle 

quattro funzioni moltiplicative. A differenza di quelle ottenute da Bhatti e Almughrabi, le 

funzioni β così ottenute hanno un significato fisico. Ciò viene anche evidenziato dai risultati 

sperimentali relativi al momento torcente all’atto della prima fessurazione. 

Per gli 87 campioni presi in considerazione vengono calcolati i momenti torcenti 

resistenti anche secondo l’ACI Code (2002), l’Eurocodice 2 (1993), la Normativa Italiana 

(1996), il modello iterativo semplificato di Hsu (1990), la formula diretta approssimata 

proposta da Hsu e il modello di Bhatti e Almughrabi. Il confronto tra i valori del coefficiente 

di variazione (COV) ottenuti per i modelli considerati evidenzia che l’espressione proposta 

risulta la più consistente in quanto il risultato sperimentale viene predetto nel modo più 

uniforme (COV=0.152). 


