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Abstract—This paper proposes a fully distributed control stra-
tegy for the management of micro-storage devices that perform
energy arbitrage. For large storage populations the problem can
be approximated as a differential game with infinite players
(Mean Field Game). Through the resolution of coupled partial
differential equations (PDEs), it is possible to determine, as a
fixed point, the optimal feedback strategy for each player and
the resulting price of energy if that strategy is applied. Once
this price is calculated, it can be communicated to the devices
which are able to independently determine their optimal charge
profile. Simulation results are provided, calculating the fixed
point through numerical integration of the PDEs. The original
model is then extended in order to consider additional elements
such as multiple population of devices and demand uncertainty.

Index Terms—Energy arbitrage, micro-storage, mean field
games.

I. INTRODUCTION

ONE of the key features of the Smart Grid paradigm is the
increasing participation of end customers in system oper-

ation. In this context, future households may be equipped with
storage devices that would be able to exchange energy with
the network. The benefits of this scenario must be considered
at two different levels: every single participant (agent) will be
able to maximise their profit by optimally charging/discharging
energy storage on the basis of energy prices, while the power
system will benefit from a reduction in the peak demand and
in the reliance on fossil fuel peaking plants. In this context the
main challenge is to design a fully distributed control strategy
which optimizes the profit of the single device and, at the same
time, takes into account the changes in prices introduced by
the whole storage population, in order to avoid synchronicity
phenomena (i.e. all devices charge when price is low and
the peak demand is simply shifted). This problem has been
the subject of significant research: in [1] the energy suppliers
adopt an adaptive pricing scheme, broadcasting the price of
energy for the devices in advance of each daily period, in order
to better predict the global storage behaviour. A game theory
approach is used in [2] to calculate the performance bounds
of the devices, which are then used as benchmark for the
proposed adaptive strategy. Game theory has also been applied
to the similar case of electric vehicles, calculating a cost-
minimizing scheduling which fills the valleys in electric load
profiles. Some elements, such as uncertainty in the utilization
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of vehicles and unidirectionality of the charging, do not apply
to the case of storage, but the chosen approaches remain of
interest. In [3] the mean behaviour of the vehicle population is
used to determine the charging profile of each agent, achieving
a Nash Equilibrium that coincides with the globally optimal
strategy if the vehicles are identical. Similarly, [4] proposes
an iterative strategy where each agent minimizes its own
cost function (which takes into account the result of the
previous iteration), reaching equilibrium with certain valley-
filling properties. A different approach is adopted in [5] to
integrate flexible demand in the electricity market, using a
two-level iterative process with Lagrange relaxation.

This paper designs a distributed control for the devices,
modelling them as competitive players that interact through
the changes in the energy prices driven by their operation
strategies of charging/discharging energy storage. If a high
number of devices are considered, the contribution of the
single element can be assumed negligible and only the global
effect of the population must be taken into account. The energy
arbitrage can therefore be approximated by a differential
game with infinite players (Mean Field Game). This kind of
games, independently developed by Huan-Caines-Malhamè [6]
and Lasry-Lions [7], are described in their basic formulation
by two coupled partial differential equations (PDEs): one
Hamilton-Jacobi-Bellman (HJB) equation, which returns the
optimal control of the agents, and one Fokker-Planck (FP)
equation which describes their distribution. In the energy
arbitrage case, by solving these coupled PDEs, it is possible to
determine a Nash equilibrium for the population of devices. By
sending the corresponding price to the agents, these are able
to independently calculate their optimal strategy. The choice
to model storage with PDEs is not new and has been already
adopted, for example in [8], to estimate the value of stochastic
storage in a centralized framework. The use of Mean Field
Games (MFGs) to describe large populations of competing
agents in the power system is present in [9] and [10], which
consider respectively electric vehicles and suppliers/consumers
dynamics. The novelty of the presented work is the application
of the MFG equations to the design of a distributed control of
storage, calculating a feedback optimal charge profile which
explicitly consider state constraints. Furthermore, the original
model is extended by considering additional factors such as
multiple populations of devices and uncertainty in demand.

The paper is structured as follows: Section II introduces
the model of the storage devices and the energy market,
approximates the energy arbitrage as a non-cooperative game
for infinite players and determines the corresponding PDEs.



2

The resolution strategy, the adopted numerical methods and
the corresponding simulation results are in Section III, while
Section IV contains some extensions to the original model.

II. MEAN FIELD GAME

The energy arbitrage problem is considered within a com-
petitive game framework: each device (agent) exchanges en-
ergy with the network aiming at maximizing its own pay-off.
The main challenge is to perform such maximization with
a distributed control strategy which takes into account the
change in energy prices introduced by the agents and achieves
a Nash equilibrium. Our analysis is focused on micro-storage
devices, which are expected to be present in the network in
the order of millions. We originally assume homogeneity of
storage: all devices have the same energy and power rating.
Instead of separately considering the individual agent, the
number of devices is approximated as infinite: the influence of
the single device on the energy price becomes negligible and
only the effect of the whole storage population (mean field)
must be taken into account. The problem is then approached as
a differential game with infinite players (Mean Field Game),
described by coupled partial differential equations.

A. Modelling of the arbitrage problem

The electricity market has been abstracted with the mono-
tonic increasing function Π which associates, to a given
value of aggregate demand D(t), the corresponding energy
price p(t) = Π(D(t)). The power demand D will be given
by two different components: the inflexible demand Di and
the contribution Ds of the storage population. The inflexible
profile is modelled with the function Di(t), initially assumed
to be known without uncertainties, while the expression for
Ds will be introduced later. Each of the infinite devices in the
storage population is described by the following equations:

Ṡ(t) = r(t)

y(t) = r(t) + γr2(t)
(1)

The variables S and r denote respectively the state of charge
(between 0 and 1) and the charging rate of the device. In
order to take into account the efficiency of storage, quadratic
losses parametrized by γ are introduced in the expression
of y, which represents the normalized power (in p.u. over
seconds) exchanged by the device with the network. If we
denote respectively by Er and Pr the energy and power rating
of the devices, the constraints on the charging rate r are:

0≤ S(t)≤ 1

rMIN = −Pr
Er
≤ r(t) ≤ Pr

Er
= rMAX

∀ t ∈ [0, T ] (2)

Alternatively, the efficiency of the devices can be expressed
through the parameter k, defined such that the linear loss kr
is equivalent to the chosen quadratic one for r = rMIN :

−γ(rMIN )2 = krMIN → k = −γrMIN (3)

Remark 1: All the results provided in this section can be
rescaled and used to approximate the scenario with a finite

number of players N . In this case the state and rate of charge
remain unaltered and it is possible to define also the stored
energy E and the charging power P . Assuming Er and Pr
equal for all devices, it yields:

E(t) = Er · S(t) P (t) = Er · r(t) (4)

The optimal power profile and the profit of the single device in
the finite case will be defined in Section IV when simulation
results are presented.
The function m is now used to describe the energy distribution
within the storage population: given two arbitrary values S1

and S2 for the state of charge,
∫ S2

S1
m(t, S) dS will denote

the fraction of devices for which S1 ≤ S(t) ≤ S2. Since the
optimal control is going to be calculated in feedback form, it
is assumed that the charging rate of the devices r(t, S) is a
function of time and current state of charge. By considering
the aggregated energy capacity ETOT = N ·Er as a rescaling
factor, the variation to total demand introduced by the storage
population can now be defined:

Ds(t) =ETOT
∫ 1

0

m(t, S)
[
r(t, S) + γr2(t, S)

]
dS

=ETOT
∫ 1

0

m(t, S)y(t, S) dS

(5)

We finally introduce the cost C minimized by each agent:

C(S(0), r(·)) =

∫ T

0

Π (Di(t) +Ds(t)) [r(t) + γr2(t)] dt

+ Ψ(S(T )) =

∫ T

0

p(t)y(t) dt+ Ψ(S(T ))

(6)
The integral in C represents the cost sustained by the device
while charging/discharging energy in the considered time in-
terval [0, T ] while the final cost function Ψ takes into account
the final state of charge and avoids, for example, the total
discharge of the device. Notice that the different agents interact
between each other by varying Ds and therefore the price of
energy. With the proposed formulation which considers infinite
agents, such variations do not depend on the single device but
only on the charge distribution m of the whole population.

B. Derivation of the coupled PDEs

It is now possible to introduce the partial differential equa-
tions that describe the Mean Field Game and are used to
determine the decentralized control. In order to calculate the
optimal rate of charge r∗ which minimizes C, an Hamilton-
Jacobi-Bellman equation is considered:

−∂tV (t, S) = min
r∈R(S)

[
p∗m(t)(r + γr2) + ∂SV (t, S)r

]
V (T, S) = Ψ(S)

(7)

In particular the function p∗m represents the price of energy
resulting from all devices (with distribution m) applying the
optimal charging profile r∗:

p∗m(t) = Π
(
Di(t) + ETOT

∫
m(t, S)y∗(t, S) dS

)
y∗(t, S) = r∗(t, S) + γr∗

2

(t, S)
(8)
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while for the interval of admissible controls R(S) it yields:

R(S) =


[
0, rMAX

]
if S = 0[

rMIN , rMAX
]

if 0 < S < 1[
rMIN , 0

]
if S = 1

(9)

Notice that (7) is a PDE in the unknown function V which,
according to the dynamic programming principle [11], can be
considered as the value function of the optimization problem
and is equal to C for t = 0:

V (t, x) = min
r(·)

∫ T

t

p∗m(τ)[r(τ) + γr2(τ)] dτ + Ψ(S(T ))

S(t) = x
(10)

The optimal control r∗, at each time instant, is the argument of
the minimum in (7) and therefore must satisfy the following:

r∗(t, S) = sat
R(S)

[
−p
∗
m(t) + ∂SV (t, S)

2γp∗m(t)

]
(11)

Since p∗m(t) depends on r∗(t, ·), there is no closed expression
for the optimal control. On the other hand it is possible to
prove, under mild assumptions, that a fixed point for equations
(8) and (11) always exists and is unique. Furthermore, the
numerical calculation of such fixed point is straightforward, for
example adopting the procedure described in the next section.

It has been shown how the optimal control r∗ depends on
the charge distribution m through the energy price p∗m but it
is important to point out how an analogue relationship holds
in the opposite sense. In particular, m depends on the charge
profile of the devices through the following conservation law:

∂tm(t, S) =−∂S [r∗(t, S)m(t, S)]

m(0, S) =m0(S)
(12)

The solution to the arbitrage problem as a Mean Field Game
consists then in the couple (V,m) (or equivalently (r∗,m)),
which represents a fixed point for equations (7) and (12). In
other words, it is necessary to determine an optimal charge
profile r∗ which minimizes the cost function C for a given dis-
tribution m and, at the same time, induces such distribution. In
practical implementations of the proposed control strategy, the
Mean Field Game solution can be calculated in a centralized
manner following the procedure detailed in the next section.
Once this has been determined, the distributed control can
be implemented with a one-way communication channel: the
resulting energy price p∗m is broadcast to the devices, which
will be able to independently calculate their optimal charge
profile by solving only equation (7).

It is difficult to theoretically prove the existence and unique-
ness of the centralized solution of the Mean Field Game.
Current mathematical literature on the topic provides results
in this sense only for much simpler classes of systems. In
the simulations described in the next sections the case of
multiple equilibria has never been experienced. Nevertheless,
if this were the case, it would be always possible to choose
the equilibrium which maximizes some global index on the
resulting energy price function or aggregate demand profile.

III. SIMULATION RESULTS

The fixed point for the Mean Field Game described by
(7) and (12) and the resulting distributed control have been
calculated by numerical integration of the PDEs. In this
respect, it is important to point out that not only the two
equations are interdependent, but they are also integrated in
two different directions. In fact, for the dynamic programming
principle, the HJB equation must be integrated backward in
time while the conservation law is integrated forward. For
this reason an iterative strategy has been chosen, solving one
equation at a time and using the result as a starting point for
the next integration. All steps of the numerical resolution are
detailed below:

1) The initial guess for the distribution function and the
demand variation introduced by storage are denoted
respectively as m̃ and D̃s and are defined as follows:

m̃(t, S) =m0(S)

D̃s(t) = 0
∀ t ∈ [0, T ] (13)

2) The HJB equation (7) is integrated backward in time
starting from V (T, S) = Ψ(S) and assuming m = m̃.
At each time step t the fixed point for equations (8)
and (11) which determines the optimal control r∗ is
calculated according to steps a) to d):

a) The energy price is initially assumed equal to
p̃(t) = Π(Di(t)).

b) Optimal control estimate r̄(t, ·) is calculated with
equation (11), where p∗m(t) is replaced with p̃(t).

c) The new price estimate p̄ is defined as follows:

p̄(t) = Π

(
Di(t) + ETOT

∫
m̃(t, S)ȳ(t, S) dS

)
(14)

with ȳ(t, S) = r̄(t, S) + γr̄2(t, S).
d) The norm |p̄(t)−p̃(t)| is evaluated. Given a certain

price error tolerance εp, if |p̄(t) − p̃(t)| < εp
the iterations are stopped and step 3 is executed.
If the condition is not satisfied, the initial price
estimation is reset with p̃(t) = p̄(t) and steps 2.b-c
are repeated.

3) A new estimate m̄ is obtained integrating forward equa-
tion (12) and assuming r∗ = r̄. The resulting demand
variation D̄s(t) introduced by storage is calculated by
replacing m̄ and r̄ in (5).

4) The following function norm is evaluated:

||D̄s − D̃s||1 =

∫ T

0

∣∣∣D̄s(t)− D̃s(t)
∣∣∣ dt (15)

Given a certain demand error tolerance εD, if
||D̄s − D̃s||1 < εD step 5 is executed. Otherwise, the
initial estimates are updated with D̃s = D̄s and m̃ = m̄
and steps 2-3 are repeated.

5) The solution of the MFG corresponds to the results of
the last iteration:

r∗ = r̄ m = m̄ (16)
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The numerical integration has been performed using finite
difference schemes. The time and state of charge steps ∆t and
∆S are chosen and the corresponding vectors are partitioned:

ti = i ·∆t Sj = j ·∆S (17)

The value of a function f(t, S) in (i∆t, j∆S) will be hereby
denoted as f ij . In the integration of the HJB an upwind method
is used [12]. The control r̄ in step 2.b is calculated using
central derivatives:

r̄ij = sat
R(Sj)

− p̄i +
V ij+1−V

i
j−1

2∆S

2γp̄i

 (18)

The integration of the HJB equation (7) at the time step i− 1
is performed with the following numerical scheme:

V i−1
j = ∆t · r̄ij

[
1 + sign(r̄ij)

2

(V ij+1 − V ij )

∆S

]

+ ∆t · r̄ij

[
1− sign(r̄ij)

2

(V ij − V ij−1)

∆S

]
+ ∆t · p̄i

[
r̄ij + γ

(
r̄ij
)2]

+ V ij

(19)

Notice that, with this approach, the calculation of the partial
derivative ∂SV at the state boundaries is straightforward: when
j = 1 the forward derivative, calculated using V i1 and V i2 , is
always adopted and the same holds for the backward derivative
when j = 1/∆S. For the integration of the conservation
law (12) the Lax-Friedrich method is used [13]. An artificial
viscosity with coefficient ε is introduced and the following
numerical scheme is adopted:

m̄i+1
j = m̄i

j −
∆t

2∆S

[
r̄ij+1m̄

i
j+1 − r̄ij−1m̄

i
j−1

]
+ ε
[
m̄i
j+1 − 2m̄i

j + m̄i
j−1

] (20)

Notice that (20) can be easily extended to the energy bound-
aries (j = 1 and j = 1/∆S) by taking into account that the
sum of the viscosity term over j must be equal to 0.

Regarding the parameters of the system, the inflexible
demand Di has been chosen equal to a 24-h UK demand
profile [14] shown in Fig. 1. The price function Π(D) has
been defined on the basis of the values used in [15] as shown
in Fig. 2. In this case study a population of N = 106 devices
has been considered, with the following parameters:

Pr = 2.5KW Er = 25KWh k = 0.25 (21)

The approximation with infinite players is then introduced,
defining the boundary conditions of the PDEs: m0 has been
chosen as a gaussian distribution and Ψ as a quadratic function
which penalizes final values of S different from 1/2:

m0(S) = 1
2πσ2 e

− (S− 1
2 )

2

2σ2 Ψ(S) = c
(
S − 1

2

)2 (22)

The time step, state of charge step and the other parameters
in the numerical integration are:

∆t = 0.02h ∆S = 0.004

σ = 1.2 c = 1000
(23)
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Fig. 2. Price of energy Π(D) with respect to aggregate demand D.

Notice that, once the Mean Field Game has been solved,
the results for a finite number of devices can be obtained
following Remark 1: the energy level E and the charging
power P for the single device can be calculated by multiplying
S and r by Er. In a similar way, it is possible to obtain their
energy distribution ms, optimal power profile P ∗ and cost
function Cs. A numerical solution to the Mean Field Game
described by (7) and (12) is now obtained by following the
procedure detailed at the beginning of this section. Simulations
have been run in a MATLAB environment on a HP Z600
machine equipped with an Intel Xeon CPU (frequency of
2.4GHz) and 12 GB of RAM. The whole resolution procedure
is completed, for the specified parameters, in about 7 seconds.
The inflexible demand profile Di and the aggregate demand
Di+Ds at each iteration of the backward/forward integration
are shown in Fig. 3. Notice that the proposed resolution
strategy converges in 3 iterations when an error tolerance
εD = 1000 is chosen. Furthermore, the presence of storage
devices performing energy arbitrage introduces in the demand
profile a considerable peak shaving/valley filling. The optimal
power profile P ∗(t, E) = r∗(t, EEr )Er is shown in Fig. 4. The
resolution of the HJB equation returns an optimal control in
feedback form: since the charge profile is not only a function
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of time but it also depends on the current energy of the device,
greater robustness is guaranteed. The energy stored in the
devices, for different values of E(0), is shown in Fig. 5: notice
that, in general, the trajectories have similar trends across
time and charging occurs in the first hours of the day when
energy prices are low. The only exception are devices with
high values of E(0): in this case the initial charging is limited
by the constraint on the maximum energy Er. Furthermore,
it is important to point out that the whole population, given
the particular choice of Ψ (equal for all devices), converges
at time T towards the energy value Er

2 . The possibility to
introduce different final constraints, for example imposing
that devices must have the same initial and final energy, is
considered in the next section. In Fig. 6 the original price of
energy p(t) = Π(Di(t)) is compared to p∗m(t), obtained when
the storage population applies the optimal charge profile r∗.
Following the variations introduced in the aggregate demand
profile (shown in Fig. 3) and the chosen price function Π,
the proposed operation strategy achieves a considerable price
reduction during peak times. If one considers definition (10)
for the value function V , the profit Gs = −Cs of the single
device as a function of its initial energy E(0) can be defined
as follows:

Gs(E(0)) = −V
(

0,
E(0)

Er

)
· Er (24)

and it is shown, for the last iteration, in Fig. 7. As previously
mentioned, in the current formulation all devices will tend
towards the same final value Er

2 of stored energy. This means
that Gs will be bigger for devices with higher values of E(0)
that have more energy available to exchange.
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IV. MODEL EXTENSIONS

The distributed control for the energy arbitrage problem,
described by the Mean Field Game with equations (7) and
(12), is extended in this section in order to consider additional
elements or different constraints.
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Fig. 7. Profit Gs of the single device as a function of the initial stored energy.

A. Cyclic Constraints

In the original formulation the final penalty function Ψ(S)
is the same for all devices which in turn induces convergence
towards similar values of E at t = T . It might be desirable to
impose, for each device, a cyclic constraint E(0) = E(T ). In
order to do so, it is necessary to introduce an additional state
variable Is, defined as follows:

Is(t) =

∫ t

0

P (τ) dτ −Er ≤ Is(t) ≤ Er (25)

Notice that Is(t) represents the total variation of stored energy
in the interval [0, t] and, to impose a cyclic constraint, it
must be required Is(T ) = 0. For the case of infinite players,
the equivalent state variable I(t) =

∫ t
0
r(τ) dτ (in p.u.)

is introduced in the Mean Field Game equations. For the
conservation law, taking into account that the optimal control
will depend from time and the two state variables, it yields:

∂tm(t, S, I) =−∂S [r∗(t, S, I)m(t, S, I)]

−∂I [r∗(t, S, I)m(t, S, I)]
(26)

Similarly, for the HJB equation:

−∂tV (t, S, I) = min
r∈R(S)

[
p∗m(t)(r + γr2)

+ (∂SV (t, S, I) + ∂IV (t, S, I)) r]
(27)

In this case the demand variation Ds introduced by the storage
population and considered in the calculation of p∗m is defined
as follows:

Ds(t) = ETOT

∫ ∫
m(t, S, I)[r∗(t, S, I) + γr∗

2

(t, S, I)] dI dS

(28)
Regarding the boundary conditions of the PDEs, for the

conservation law (26) it is sufficient to impose the same initial
distribution in S, with I = 0. Denoting by δ the Dirac delta,
it yields:

m0(S, I) =
1

2πσ2
e−

(S− 1
2 )

2

2σ2 · δ(I) (29)

The cyclic constraints can be finally imposed by deciding to
penalize, for example quadratically with parameter c, the final
values of I:

Ψ(S, I) = c · I2 (30)

As in the previous case, the coupled PDEs (26) and (27)
have been solved numerically, using the algorithm described
at the beginning of Section III. The main difference is that the
additional state variable increases considerably the computa-
tional complexity of the integration schemes. For this reason,
different numerical methods are considered. The step ∆r is
introduced and the admissible controls are defined as:

rl = [rMIN + l ·∆r] l = 0, 1, . . . , r
MAX−rMIN

∆r
(31)

The time and state of charge vectors are partitioned in such a
way that the state variation introduced by rl is a multiple of
∆S:

∆S = ∆r ·∆t = ∆I (32)

A notation similar to the one described in Section III is adopted
for the numerical schemes, denoting as f ij,k the value of a
function f(t, S, I) in (i∆t, j∆S, k∆I). It is now possible to
solve the HJB equation simply as a dynamic programming
problem:

V i−1
j,k = min

l

[
p̄i
[
rl + γr2

l

]
+ V ij+∆l,k+∆l

]
(33)

where ∆l = rl
∆t
∆S corresponds to the energy index variation

introduced by rl. Given the control r̄ij,k and the corresponding
energy index variation ∆̄i

j,k, the integration of the conservation
law can be easily implemented by initializing m̄i+1 at 0 and
iterating the following over j and k:

m̄i+1
j+∆̄i

j,k,k+∆̄i
j,k

= m̄i+1
j+∆̄i

j,k,k+∆̄i
j,k

+ m̄i
j,k (34)

The scenario described in the previous section has been
simulated with the following parameters:

Pr = 2.5KW Er = 25KWh k = 0.25

∆r = 0.0125/h ∆t = 0.32h

∆S = ∆r ·∆t = 0.004 c = 105

(35)

The algorithm for the resolution of the MFG converges, as
in the previous case, in about three iterations and, given
the additional variable I introduced in the problem, for the
parameters in (35) requires about 4 hours to be completed.
Notice that, by simply choosing ∆r = 0.025/h it is possible
to complete the same calculations in 1 hour, with a difference
in the results which is not significant. The profile of total
demand obtained in simulations is very similar to the one
in Fig. 3. The corresponding energy trajectories for different
values of E(0) are shown in Fig. 8. As expected, each device
charges/discharges on the basis of the current price of energy,
returning at its initial state of charge for T = 24h. In this
case the profit Gs of the single device as a function of
its initial energy E(0) is equal to −V

(
0, E(0)

Er
, 0
)
Er. A

sensitivity analysis has been carried out, comparing the results
for different values of Er (while keeping unaltered the other
parameters). The results are shown in Fig. 9. As expected, to
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higher energy ratings correspond higher profits. It should also
be noticed that, in general, the arbitrage is more profitable for
the devices which start with a low state of charge and are
therefore able to charge more energy during the first hours,
when energy price is lower. A further consideration can be
made for the case Er = 25KWh: in this case the highest
profit is achieved by devices with initial state of charge within
a certain interval. It can be noticed from Fig. 8 that these
devices are the ones for which the constraints on minimum
and maximum energy are not active in the considered time
horizon.
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Fig. 8. Stored energy of the devices across time for different values of E(0)
(Er = 25KWh).
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Fig. 9. Profit Gs of the single device as a function of the initial state of
charge S(0), for different energy ratings.

B. Multiple Populations of Devices

Given the chosen MFG approach, a preliminary hypothesis
was the homogeneity of the devices: all agents have the
same efficiency, capacity and maximum rate of charge. It

is possible to introduce in the model a parameter α which
varies in the population, considering it as an additional state
variable and imposing α̇ = 0. The main problem with this
approach is that increases considerably the complexity of the
problem. An acceptable trade-off can be obtained if, instead
of parameters that vary continuously, we consider a finite
number of populations, each with devices of the same kind.
Notice in fact that, for the considered arbitrage problem, the
different populations interact only through the energy price
Π(Di+Ds). The distributed control for this particular case can
be obtained by solving in parallel a set of coupled PDEs (26)
and (27), one for each population, that share the same price
function. The same resolution procedure is followed, with a
different expression for the demand variation introduced by
storage. Denoting with subscript j the energy distribution, total
capacity and optimal control for each of the M populations,
it yields:

Ds(t) =

M∑
j=1

ETOTj

∫ ∫
m̄j(t, S, I)ȳj(t, S, I) dS dI (36)

where ȳj is the normalized power exchanged by the devices
of the jth population and is defined as:

ȳj(t, S, I) = r̄j(t, S, I) + γj r̄
2
j (t, S, I) (37)

In the case of a finite number M of populations, each with
the same parameters, M coupled PDEs are solved in parallel,
with a computational complexity that increases linearly with
respect to M . This extension is particularly significant if one
considers practical implementations of the proposed control
algorithm. In fact, in order to obtain the equilibrium of the
Mean Field Game, the centralized entity that performs this
calculation must know the initial energy distribution of the
devices and the corresponding characteristics (energy/power
rating and efficiency). In this respect, it is reasonable to
consider that a finite number of device typologies (with known
parameters) will be available for commercial purposes. In the
proposed formulation to each kind of device will correspond
one of the M populations described above.

A scenario with two populations (A and B) has now been
simulated, with the following choice of parameters:

NA = 5 · 105 ErA = 20KWh PrA = 2KW

NB = 5 · 105 ErB = 30KWh PrB = 3KW
(38)

The equations of the mean field game with cyclic constraints
have been integrated using the same boundary conditions
and numerical methods presented in the previous subsection.
With the hardware/software specifications provided in Section
III, the simulation is completed in about 4 hours. As in the
previous case, the simulation time is sensibly reduced if one
increases the discretization step ∆r of the control r. The
aggregate demand profile is shown in Fig. 10: notice that,
as in previous cases, convergence to the solution is achieved
in about 3 steps. Furthermore, the peak shaving/valley filling
introduced by storage is comparable to the case when only one
population is considered. The profit of the devices as a function
of their initial state of charge is compared in Fig. 11 for the
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two populations. Notice in particular that, for the devices of
population A, with a lower power rating, the corresponding
profit GsA is sensibly lower. Furthermore, the considerations
on Fig. 9 about the effect of the initial state of charge can be
extended to the present case.
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Fig. 10. Aggregate demand profile at each iteration of the MFG-solving
procedure.
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Fig. 11. Profit Gs of the single device as a function of the initial state of
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C. Uncertainty in Demand

Another assumption in the initial calculation of the dis-
tributed control presented in Section II is that the inflexible
demand profile Di is known without uncertainties. It is possi-
ble to consider error in the demand forecast Df by introducing
the following expression:

Df (t) = Di(t) + η(t) (39)

where Di is the actual inflexible demand profile and η is a
stochastic process. One possible way to take into account this
uncertainty is to use a receding horizon control:

1) At time t the actual demand Di(t) is measured and the
forecast Df is estimated over the interval [t, t+ T ].

2) Based on the current distribution m(t, ·), the final cost
function Ψ is updated:

S̄(t) =

∫ 1

0

m(t, S)S dS

Ψ(S) = c ·
(
S − S̄(t)

)2 (40)

3) The coupled PDEs (7) and (12) are solved considering
Df as profile of inflexible demand.

4) The optimal r∗ is applied only at the current time step.
5) Steps 1-4 are repeated for t+ ∆t.

This approach allows to implicitly incorporate uncertainty in
the model but, on the other hand, increases the computational
complexity by a factor of T/∆t since the equations of the
Mean Field Game must now be solved at each time step.
Denoting by W the Wiener process, the dynamics of η are
defined as follows:

dηt = σf · dWt (41)

Notice that the forecast error η is characterized by mean
value µη(t) = 0 and standard deviation ση(t) = σf

√
t, as

similarly shown for example in [16]. The performance of the
receding horizon strategy has been evaluated for the case study
described in Section III, with a higher time step ∆t = 0.2h.
The average daily profit Ḡs of the single device over 200 days
has been calculated for different values of σf and is shown in
Fig. 12. The calculations for each σf are completed in about 80
minutes. Notice that, in practical implementations, they would
be gradually performed during the whole time interval and
not entirely at the beginning. As expected, there is a reduction
of Ḡs for increasing values of σf . On the other hand such
reduction is not very significant: by solving the MFG at each
time step, with updated forecasts on demand, the impact of
uncertainties on the final result can be considerably reduced.
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Fig. 12. Average daily profit Ḡs of the single device as a function of the
parameter σf when the receding horizon control is applied.
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V. CONCLUSION

A new methodology for distributed control of storage that
performs energy arbitrage is presented. The changes in the
total power demand and energy price introduced by the de-
vices are modelled by describing the storage population as
a continuum and the problem is approached as a differential
game with infinite players. Once the game is solved by the
integration of coupled PDEs, an updated energy price can
be communicated to the devices, which are able to calculate
their optimal charge profile in a decentralized manner. The
methodology is tested through simulations and then expanded
to account for additional elements such as cyclic constraints
on the state of charge and demand uncertainty.
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