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Heterogeneous network flow 
and Petri nets characterize 
multilayer complex networks
Alma Ademovic Tahirovic1*, David Angeli1,2 & Goran Strbac1

Interacting subsystems are commonly described by networks, where multimodal behaviour found 
in most natural or engineered systems found recent extension in form of multilayer networks. Since 
multimodal interaction is often not dictated by network topology alone and may manifest in form 
of cross-layer information exchange, multilayer network flow becomes of relevant further interest. 
Rationale can be found in most interacting subsystems, where a form of multimodal flow across layers 
can be observed in e.g., chemical processes, energy networks, logistics, finance, or any other form of 
conversion process relying on the laws of conservation. To this end, the formal notion of heterogeneous 
network flow is proposed, as a multilayer flow function aligned with the theory of network flow. 
Furthermore, dynamic equivalence is established with the framework of Petri nets, as the baseline 
model of concurrent event systems. Application of the resulting multilayer Laplacian flow and flow 
centrality is presented, along with graph learning based inference of multilayer relationships over 
multimodal data. On synthetic data the proposed framework demonstrates benefits of multimodal 
flow derivation in critical component identification. It also displays applicability in relationship 
inference (learning based function approximation) on multimodal time series. On real-world data 
the proposed framework provides, among others, multimodal flow interpretation of U.S. economic 
activity, uncovering underlying empirical steady state probability distribution, as well as inherent 
network (economic) robustness.

Networks represent a common tool used to describe interacting subsystems, by formalizing their physical or 
abstract connections. Modes of connectivity are often regarded as mono-semantic, however, true interaction in 
most natural or engineered systems is frequently multimodal in nature. The inability to describe such systems 
by traditional networks motivated extension in form of multilayer networks1,2, based on applications found in 
sociology and  psychology3–8,  chemistry9,10, and  physics11–15. This attempt to develop a framework and general-
ize tools from network science to study multilayer complex systems is only  recent2. Some common formalisms 
falling under the framework of multilayer networks involve multiplex networks (single type of nodes, multiple 
types of edges)16,17, networks of networks (multiple types of networks, connected by partially dependent node or 
network pairs)18, or heterogeneous networks (multiple types of networks, connected by distinct types of nodes 
and edges)19–22. A comprehensive survey of common concepts falling under the framework of multilayer networks 
is provided in works such  as2,23. Some of these networks e.g., heterogeneous networks, are furthermore formally 
classified as layer-disjoint networks, a term meant to emphasize that each node of the network associates to a 
single layer (single type)  only2.

Beyond its topological aspect, interaction in interconnected subsystems is often characterized by some form 
of evolution process, which under steady state conditions can be described as a network flow. Network flow in 
multilayer settings has so far been studied in multiplex  networks24, coupled cell networks (multiple types of 
nodes and edges, but requiring single-type edges for bidirectional flow)25, or has otherwise been regarded in 
the context of a random walk or diffusion movement in a single-mode  sense26,27. A formal theory of network 
flow28,29, satisfying conditions of both conservation and coupling of flow across different network semantics, has 
so far not been proposed in the context of multilayer networks, or within the framework presented in this paper. 
Besides the merit of a unified formal treatment, the rationale lies in an underlying physical interpretability found 
in most interacting subsystems, where a form of multimodal flow across layers can be observed in e.g., chemi-
cal processes, energy networks, logistics, finance, or any other form of conversion process relying on the laws of 
conservation. Some real-world examples of interacting subsystems with multilayer network structure involve, 
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multi-carrier energy networks, financial networks, and transportation networks, to name a few. To this end, the 
formal notion of heterogeneous network flow is proposed, as a multilayer flow function aligned with the theory 
of network  flow28,29. A dynamic equivalence with the framework of Petri nets30,31 is established, as the baseline 
model of concurrent event systems, relating to continuous timed  processes32–34 and associated network  flow35. 
The construction enables flattening of the multilayer relationship structure, while retaining physical interpret-
ability, as the proposed correspondence is reversible. The Petri net flow relations are here extended, to possibly 
incorporate both fundamental equations of  balance36, namely: flow balance, which is integral to the Petri net 
model, and node potential balance (cycle space condition), which may arise in relation to specific application 
domains. Overall, where a multilayer network represents a generalization over the classic definition of a graph 
or network, the proposed framework represents a generalization over the notion of a network flow and node 
relationship (whenever, due to semantics, both connectivity and conversion of data are crucial). As such, the 
proposed framework enables derivation of a layered relationship structure (corresponding to connectivity and 
conversion of node data), as opposed to a classic flat relationship structure (corresponding to connectivity of 
node data only). Applications of the resulting multilayer Laplacian flow and flow centrality are presented, along 
with graph learning based inference of multilayer relationships over multimodal data.

The remainder of this paper is organized as follows. In “Background concepts” an overview of mathematical 
preliminaries is presented. The proposed methodology is introduced under “Proposed framework”, while illus-
tration of possible applications is presented in “Illustrative examples”. In “Discussion and outlook” key findings 
and future work are summarized, while concluding remarks are presented in “Conclusions”.

Background concepts
To aid further understanding of the proposed framework, a brief introduction of background concepts is pre-
sented, including basic terminology and notation. The formal notions of graphs, network flow, multilayer net-
works and Petri nets are introduced individually, by recalling some relevant definitions.

Graphs. A graph G is considered an ordered tuple G = (V ,E) , with a vertex set V of cardinality n (graph 
order) and edge set E of cardinality m (graph size). The edge set E is a subset E ⊆ [V ]2 , where [V ]2 denotes all 
two-element subsets of V defining distinct pairs of adjacent vertices or nodes, incident to their relevant edge. 
An adjacency matrix Am ∈ R

(n×n) is a matrix encoding among all distinct vertex pairs of a graph, those which 
belong to an edge set. An incidence matrix At ∈ R

(n×m) is a matrix encoding all incident vertices and edges. 
The graph G = (V ,E′,µ′) comprising of not necessarily distinct vertex pairs is considered a multigraph37. The 
multigraph is defined with respect to a finite edge set E′ , where association to pairs of nodes is taking place with 
respect to a map µ′ : E′ → [V ]2 . The map µ′ assigns to each edge two end vertices, allowing multiple edges 
between adjacent nodes (note that self-loops are left out in this definition). To simplify notation, a graph is 
always denoted as G = (V ,E) , where a multigraph is always understood in the latter context. The graph can be 
weighted ω : E → R

+ ( R+ = {x ∈ R | x > 0} ) or unweighted, where ω denotes the weighting coefficient. The 
graph is assumed connected, or otherwise decomposed into the union of its connected graph components.

A network N is a digraph or directed graph defined on an ordered tuple N = (V ,AN ) . A flow network Nf  is 
a digraph with additional structural properties i.e., Nf = (N , c, s, t) ≡ (V ,AN , c, s, t) . The digraph consist of an 
arc set AN ⊆ V × V  of ordered vertex pairs or node pairs, forming directed edges or arcs (u, v) ∈ AN . Node u 
denotes the initial vertex or arc tail and node v the end vertex or arc head. A flow network comprises further-
more of an arc capacity function c : AN → R

+ . It is also defined with respect to two distinguished subsets of V, 
denoted as S and S̄ , where S ⊆ V  defines the set of sources of Nf  , and S̄ ⊆ V  the set of sinks. From a physical 
point of view, these subsets define the sets of points where flow enters or leaves a network, in form of exogenous 
flow. From a mathematical point of view, S and S̄ are arbitrary subsets of V (normally disjoint, as any overlap is 
cancelled out as net flow). Vertices v ∈ V \ (S ∪ S̄) are called intermediate. Flow network Nf  can, without loss of 
generality, be reduced to a flow circulation, a single-source s and single-sink t representation by auxiliary vertices 
s, t ∈ V  , referred to as the environment. Single-source s is incident with all source vertices S = {u | (s, u) ∈ AN } , 
and such that (v, s) /∈ AN , ∀v ∈ V  . Single-sink t is incident with all sink vertices S̄ = {v | (v, t) ∈ AN } , and such 
that (t, u) /∈ AN , ∀u ∈ V  . The transformation converts sources u ∈ S \ {s} and sinks v ∈ S̄ \ {t} to intermediate 
nodes, with intermediate arc set AN̄ ⊆ AN obtained as the set of all arcs not incident with the environment. Arc 
capacity from and to the environment is assumed infinite. The direction of flow in a flow network corresponds to 
the direction of an arc (providing physical meaning), hence bidirectional flow is represented by two oppositely 
directed arcs.

Network flow. Network flow is a function defined with respect to the topology of a flow network. Somewhat 
counter-intuitively it is not primarily concerned with the mechanics of flow, but rather with the algebraic rela-
tionships encoded in the flow process. A network flow can be considered a form of algebraic tool. The following 
definition is derived  from28,29, chosen for interpretability (slightly adapted to the formal content of this paper), 
but can equivalently be given with respect to a flow  circulation37.

Definition 1 (Network flow) Let N be a multigraph N = (V ,AN ) , with bidirectional arc set AN , and let Nf  be 
a flow network Nf = (N , c, s, t), c : AN → R

+ . A network flow f is a function f : AN → R
+
0  , satisfying the fol-

lowing constraints: 

 (i) Capacity constraint: 0 � f (i, j) � c(i, j), ∀(i, j) ∈ AN,
 (ii) Conservation of flow: 

∑
{j|(j,i)∈AN }

f (j, i)−
∑

{j|(i,j)∈AN }
f (i, j) = 0 , ∀i ∈ V \ {s, t},

 (iii) Complementarity constraint (direction of flow): f (i, j) · f (j, i) = 0, {∀(i, j) ∈ AN | (j, i) ∈ AN },
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where f is a nonnegative flow with capacity constraint c, while (j, i), (i, j) ∈ AN correspond to inflow and outflow 
arcs of node i ∈ V  , respectively.

The definition of network flow is here introduced with respect to the notion of positive or negative direc-
tion (similar to a vector), rather than positive or negative flow (providing physical meaning and some formal 
convenience). It is worth noting that in a classic network flow node participation is one-fold, and corresponds 
to conservation of flow. In the work presented in this paper this role is extended to coupling (in form of flow 
conversion). It is also worth pointing out that a network here is understood as an abstract mathematical object, 
where network structure encodes relationships describing certain systems or processes. This will be explained 
in more detail in the proposed framework section, under “Heterogeneous flow networks”.

Multilayer networks. A multilayer network comprises of a node set V, as any other network or graph. It 
furthermore consists of layers αi , i ∈ {1, . . . , b} (Fig. 1a, horizontal rectangles), where b denotes the total number 
of layers. Each layer αi is an array (αi

1, . . . ,α
i
d) of elementary layers αi

a (Fig. 1a, Cartesian axes labels, e.g., X, Y), 
corresponding to aspects a ∈ {1, . . . , d} , where d denotes the total number of aspects or dimensions (Fig. 1a, 
Cartesian axes). The layers form a layer sequence LM = {La}

d
a=1 , consisting of sets of elementary layers La , where 

La = {α | ∃i ∈ {1, . . . , b},αi
a = α} (Fig. 1a, light grey highlight). Nodes and layers form a multilayer node set 

VM ⊆ V × L1 × ...× Ld , comprising of node-layers (u,αi) ≡ (u,αi
1, . . . ,α

i
d) , such that u denotes a node u ∈ V  

existing on a respective layer αi (Fig. 1a, e.g., node-layer (2,αi) , i ∈ {3} ). The multilayer edge set EM ⊆ [VM ]2 
is a two-element subsets of VM . The intra-layer edge set is a set EA = {{(u,αi), (v,αj)} ∈ EM | αi = αj} (Fig. 1a, 
solid lines), while an inter-layer edge set is a complementary set EC = EM \ EA (Fig. 1a, dashed lines). A coupling 

Figure 1.  Illustration of multilayer and heterogeneous network, with Petri net. (a) Multilayer 
network M = (VM ,EM ,V , LM) , consisting of vertex set V = {1, . . . , 10} , and layer sequence LM 
comprising of sets of elementary layers L1 = {A,B} , L2 = {X,Y} , with two aspects d = 2 . The network 
consists of four layers, αi ≡ (αi

1,α
i
2), i ∈ {1, . . . , 4} : (A,X), (A,Y), (B,X), (B,Y) , a node-layer set 

VM = {(1,A,X), (4,A,X), (5,A,X), (9,A,Y), (10,A,Y), (1,B,X), . . . , (8,B,Y)} , and an edge set EM , 
comprising of intra-layer edge set EA (solid lines), inter-layer edge set EC (dashed lines), and coupling edge 
set EC̄ (dashed grey lines, corresponding to e.g., node-layer (1,αi) , i ∈ {1, 3} ). (b) Heterogeneous (layer-
disjoint) network, with path between nodes in layers α1,αb (left), along with network schema and meta-path 
R1,1 ◦ ... ◦ Rb−1,b , formed of relation types Ri,j ∈ RT , between object types Oi ,Oj ∈ OT , i, j ∈ {1, . . . , b} (right). 
(c) Petri net, with place nodes pi , pj ∈ P (circles) interpretable as resources or system states, and transition nodes 
tk ∈ T (bars) interpretable as processes, along with Pre and Pos functions (arcs), interpretable as conversion 
ratios or weights (left) (e.g., 1 unit of resource p1 , produces 1.2 units of resource p2 , and 1.3 units of resource p3 , 
through process t1 (right)).
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edge set is a subset EC̄ ⊆ EC , EC̄ = {{(u,αi), (v,αj)} ∈ EC | u = v} (Fig. 1a, dashed grey lines, corresponding to 
e.g., node-layer (1,αi) , i ∈ {1, 3} ). One can analogously define the multilayer arc set AM ⊆ VM × VM . The tuple 
GM = (VM ,EM) is referred to as the underlying multilayer network graph. If the graph is weighted, a weighting 
function ωM : EM → R

+ is defined. The graph is otherwise referred to as unweighted. The concept of a graph 
or network introduced in previous subsections is what is commonly referred to as a single-layer network or 
monoplex in multilayer network terms. The formal definition of the presented multilayer network concept is 
introduced in Definition 2. A graphical illustration is presented in Fig. 1a.

Definition 2 (Multilayer network1,2) Let LM be a layer sequence LM = {La}
d
a=1 of sets of elementary layers 

La for each aspect a ∈ {1, . . . , d} , and let VM be a multilayer node set VM ⊆ V × L1 × ...× Ld of node-lay-
ers (u,αi) ≡ (u,αi

1, . . . ,α
i
d) , where u ∈ V  represents a node existing on a respective layer αi ≡ (αi

1, . . . ,α
i
d) , 

i ∈ {1, . . . , b} . Given a multilayer edge set EM ⊆ [VM ]2 of unordered node-layer pairs and a multilayer arc set 
AM ⊆ VM × VM of ordered node-layer pairs, a multilayer network M is an ordered tuple M = (GM ,V , LM) 
defined on an underlying multilayer network graph GM = (VM ,EM) , where M is directed if the underlying 
multilayer network graph is directed i.e., GM = (VM ,AM).

In a heterogeneous network all nodes associate to one specific layer or type, and can be adjacent to nodes of 
either the same or a different  type19, which also applies to  edges22. The network is formally classified as layer-
disjoint, which emphasizes that each node of the network associates to a single layer  only2. In the following 
definitions the formal notions of a layer-disjoint2 and heterogeneous  network19,22 are recalled. The corresponding 
notions of a meta-path and information network are interpreted  from22.

Definition 3 (Layer-disjoint network2) Let M be a multilayer network M = (GM ,V , LM) , VM ⊆ V × L1 × ...× Ld , 
L1, . . . , Ld ∈ LM . A multilayer network M is said to be layer-disjoint, if each node u ∈ V  exists in at most one 
layer αi i.e., (u,αi), (u,αj) ∈ VM ⇒ αi = αj.

Definition 4 (Information network22) Let N be a digraph N = (V ,AN ) , with an object type mapping function 
θ : V → OT and a relation type mapping function ψ : AN → RT . An information network I is a digraph defined 
on an ordered tuple I = (N , θ ,ψ) , such that there is a surjection ψ(l) = (θ(u), θ(v)) , where each vertex u, v ∈ V  
belongs to one particular object type θ(u), θ(v) ∈ OT , and each arc l = (u, v) ∈ AN belongs to one particular 
relation type ψ(l) ∈ RT . The digraph TI = (OT ,RT ) is a network schema, defined as a meta template of informa-
tion network I.

An information network represents a mathematical object, establishing correspondence between a node set 
V and arc set AN , and a set of object types OT and relation types RT , respectively, such that reference to each 
element is preserved. The formal notion enables introduction of a heterogeneous network (Fig. 1b, left panel), 
where nodes and edges associate to one specific layer or type (Fig. 1b, right panel), such that there is more than 
one object type OT or relation type RT , as introduced next (Definition 5). The notion of heterogeneity refers here 
to semantics (i.e., physical interpretation of disjoint layers), while other types of heterogeneity (e.g., node degree) 
are supported implicitly, as is any other property inherent to single-layer (classic) networks, as supported by the 
generalized network form, the multilayer network (where a multilayer network represents a generalization over 
a classic definition of a network, while a heterogeneous network represents a multilayer network class).

Definition 5 (Heterogeneous network19,22) Let M be a multilayer network M = (GM ,V , LM) , GM = (VM ,AM) , 
and let M be layer-disjoint. Given an information network H = (M, θ ,ψ) , with an object type mapping func-
tion θ : VM → OT and a relation type mapping function ψ : AM → RT , H is said to be a heterogeneous network, 
if the cardinality of the set of object types is |OT | > 1 or the cardinality of the set of relation types is |RT | > 1.

Definition 6 (Meta-path22) Let H be a heterogeneous network H = (M, θ ,ψ) , with network schema 
TH = (OT ,RT ) . A meta-path PH is a composite relation Ri,i+1 ◦ ... ◦ Rj−1,j , Ri,i+1, . . . ,Rj−1,j ∈ RT , on object 
types Oi ,Oj ∈ OT , ∀i, j ∈ {1, . . . , b} , where ◦ denotes a composition operator of relations.

A network schema of a heterogeneous network corresponds to a topological projection of paths between 
node-layers (Fig. 1b, left panel), onto a set of composite relations between elements of object types (Fig. 1b, right 
panel). The formal notion of a universal path across object types (Fig. 1b, right panel) corresponds to a meta-
path22. Note that an inverse relation R−1

l  on a meta-path does not necessarily always exist in a general sense. A 
transpose relation RT

l  , however, does by definition.

Petri nets. The Petri net30,31 is a model of information flow, with specific focus on concurrent event sys-
tems and topological representation of the underlying relationship structure. A Petri net is a tuple of the form 
PN = (P,T , Pre, Pos) , where: P is a set of n place nodes, T is a set of m transition nodes, Pre : P × T → R

+
0  is an 

incidence function specifying weights from places to transitions, and Pos : P × T → R
+
0  is an incidence func-

tion specifying weights from transitions to places (Fig. 1c). In a physical sense, place nodes (Fig. 1c, circles) can 
informally be understood as resources or system states, while transition nodes (Fig. 1c, bars) can be understood 
as processes. The incidence matrix is derived as C = Pos − Pre . The pre and post sets are denoted as ◦u, u◦ , 
respectively, where u ∈ P × T . A marking is a mapping of the form Q : P → R

+
0  (that can be represented by a 
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vector, once places are ordered), which assigns to each place a nonnegative quantity called mark. A P-invariant 
is a vector of the form x ∈ R

+n

0  , where xTC = 0 with support set �x� = {pi ∈ P|xi > 0} . A T-invariant is a vector 
of the form y ∈ R

+m

0  , where Cy = 0 with support set �y� = {tj ∈ T|yj > 0} . The two relations encode fundamen-
tal laws of mass conservation (P-invariant), and flow balance (T-invariant)38.

The Petri net was initially introduced as a discrete  model30,31, but was later on extended to a continuous Petri 
net (CPN)32,33 〈PN ,Q0, �〉 , where: Q0 is a vector of initial markings Q0i = Q0i (pi) , assigned to each place pi ∈ P , 
|P| = n , and � = [�1, �2, . . . , �m]

T is a vector of finite transition firing rates, assigned to each transition tj ∈ T , 
|T| = m . The mark enters a place pi at time τ and enables all adjacent transitions tj ∈ p◦i  , as soon as the marking 
Qi becomes available. The marking evolution is governed by the state equation

such that transition tj ∈ T is considered enabled, provided that one can find a rate vector � ∈ R
+m

0  , with tj ∈ ��� , 
where [C�]i ≥ 0 for all i such that Qi = 0 . The role of flow in a CPN is directly related to the notion of a station-
ary transition firing rate � . The set of admissible firing rates at equilibrium can be computed by means of a CPN 
linear  program35, which for a system of the form 〈PN ,Q0, �〉 , with incidence matrix C and a finite firing rate � , 
can be formulated as

Proposed framework: heterogeneous network flow (multimodal flow)
The proposed framework is introduced with respect to two novel complementary concepts, namely: the formal 
notion of a heterogeneous flow network, as the underlying network topology and multilayer equivalent of a Petri 
net, and heterogeneous network flow, as the multilayer flow function enabling derivation of multimodal flow. The 
framework is thereby aligned with formal requirements from complex network theory and the theory of network 
flow, introduced in “Background concepts”.

Heterogeneous flow network. A heterogeneous flow network (HFN) is a class of layer-disjoint multilayer 
flow networks, endowed with structural properties aligned with the theory of network flow (Definition 1). For 
tractability and with slight abuse of notation, node-layers (u,αi) are from here on denoted as ui , given layer-
disjoint nature of an HFN, which preserves the layer reference of node u. In the following definition the formal 
notion of an HFN is introduced.

Definition 7 (Heterogeneous flow network) Let H be a heterogeneous network H = (VM ,AM ,V , LM , θ ,ψ) , where 
AA ⊆ AM is a set of intra-layer arcs of weight ω : AA → R

+ , and AC = AM \ AA a set of inter-layer coupling links 
of weight k : AC → R . A heterogeneous flow network Hf  is a network of the form Hf = (H , c, s, t) , with arc capacity 
function c : AA → R

+ , and single-source and single-sink sets s, t ⊆ VM , (s ∪ t) ∩ Vi
M = {si , ti} , where Vi

M ⊆ VM 
is a subset of node-layers defined with respect to layer αi , i ∈ {1, . . . , b} , and AĀ = {(ui , vi) ∈ AA|u

i , vi /∈ s ∪ t} 
is an intermediate intra-layer arc set.

The HFN is layer-disjoint in the sense that a node residing in multiple layers of an HFN has parts physically 
belonging to different semantic domains. The correspondence can be linked to the notion of a split node29, a 
network transformation converting one node u into b distinct nodes ui , connected by objects referred to as links, 
(ui , uj) , i  = j , ∀i, j ∈ {1, . . . , b} (Fig. 2a, illustrating a heterogeneous flow network Hf  , with node u split into two 
distinct nodes, u and ũ , forming link (u, ũ) ). In an HFN a link corresponds to an inter-layer arc (where AC̄ = ∅ 
i.e., the nodes reside in distinct layers and are layer-disjoint). The link constitutes an element of the composite 
relationship structure formed between nodes in different layers i.e., the HFN meta-path. The definition of an 
HFN meta-path is taken over from Definition 6. The link is directed due to the directed nature of a relation. In 
topological line-graph terms (graph dual terms), a link is defined with respect to the notion of a node. The node 
in an HFN meets two functional properties, namely: conservation of flow, in its original network flow sense, and 
coupling, in its line-graph form as a link (through flow conversion). This goes beyond the classic definition of 
a network flow, where a flow function does not distinguish on the role of coupling or concurrency. The HFN 
network flow, however, does due to the following property (Definition 8): the line-graph equivalent of a hetero-
geneous multilayer flow network is a Petri net (Fig. 2b).

Definition 8 (HFN-Petri net—transformation) Let Hf  be a heterogeneous flow network Hf = (H , c, s, t) . To any 
given heterogeneous network H = (VM ,AM ,V , LM , θ ,ψ) , we associate a Petri net Pf = (P,T , Pre, Pos) defined 
as follows: 

 (i) Place nodes: 

 (ii) Transition nodes: 

 each corresponding to a single intra-layer arc (u, v) ∈ AA;
 (iii) Incidence functions: 

(1)Q̇ = C�

(2){� ≥ 0 | C� = 0}.

(3)P = VM \ {s, t}

(4)T = {tu,v | (u, v) ∈ AA}
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Finally, we associate a function �̄ : T → R
+ , which assigns to each transition a firing rate capacity bound 

equivalent to c, and a function ω̄ : T → R
+ , which assigns to each transition a weight equivalent to ω , such that

(5)Pre(ũ, tu,v) =

{
1, if ũ = u
−k(u, ũ), if (u, ũ) ∈ AC , k(u, ũ) < 0
0, otherwise

(6)Pos(ũ, tu,v) =

{
1, if ũ = v
k(u, ũ), if (u, ũ) ∈ AC , k(u, ũ) ≥ 0.
0, otherwise

(7)�̄(tu,v) =c(u, v)
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We call Eqs. (3)–(8) an HFN-Petri net (HFN-PN) transformation, Tf : Hf → Pf .

Remark 1 The transformation Tf : Hf → Pf  defined in Definition 8, retains all information about network Hf  . 
For Eqs. (3), (4) and (7), (8) such observation is trivial, given one-to-one correspondence between all elements 
of domain and range, for each relation individually. Though the single-source and single-sink sets, s and t, are 
not mapped to the set of all places P, the transformation is invertible given relation (4). The relation maps the 
entire intra-layer arc set AA to a set of all transitions T, making s and t the complementary node sets, relating 
to all transitions with no incoming or outgoing places, respectively, which is uniquely determined. For Eqs. (5) 
and (6) the transformation is not one-to-one. However, note that AC is a set of all inter-layer couplings, uniquely 
determined by its node set counterpart. Inter-layer links (u, ũ) ∈ AC correspond to reference of node u to each 
distinct layer α̃ the node resides on (Fig. 2b,d), as retained by labelling of node-layers in VM , and consequently 
places in P, which can be traced back and is uniquely determined.

The transformation in Definition 8 is invertible, within the class of Petri nets obtained by the injection 
(Remark 1). It is retained by the one-to-one correspondence within its image (Fig. 2b). Note that a multi-semantic 
split node (node residing in multiple layers) or its links, correspond to a single network element, transformed 
to a transition node with multiple outgoing and/or incoming arrows (as an equivalent network object). Place 
and transition nodes can thereby, as specified in “Background concepts”, be interpreted as e.g., resources and 
processes, respectively.

The transformation encodes through Eq. (1), the evolution process of a positive compartmental system q(φ)39,40, 
where q denotes donor mass (equivalent to Q), and φ the flux or mass flow (equivalent to � ). Incidence matrix C, 
derived from Eqs. (5) and (6), encodes furthermore, a proportion between adjacent domains αi ,αj , φj = kφi41,42, 
where k denotes a coupling modulus or conversion coefficient. It is worth noting that a Petri net concurrently repre-
sents both, conservation and coupling relations, structurally encoded in incidence matrix C. A Petri net can thereby 
be understood as a form of mathematical object, where state space relations and physical constraints are integrated 
into the network structure (as in the case of a classic graph or flow network) (Fig. 2c). This property, beyond compu-
tational context (transition firing rates, marking evolution  process35) exploited in the following subsection, provides 
access to a number of structural and behavioural analysis  tools38.

Heterogeneous network flow. A heterogeneous network flow is a flow function, which can be described 
by two types of flow processes, namely: transfer, a classic form of intra-layer network flow, and coupling, a form of 
inter-layer flow establishing exogenous relationship between layers in form of transformation. Though coupling 
may conveniently be referred to as inter-layer flow, in essence, no physical flow as in the sense of transfer is tak-
ing place. The flow represents rather an exchange or update, where relationship between inflow and outflow is 
not necessarily an identity (as in the case of intra-layer flow). Wherever inter-layer flow is encountered, a type of 
flow conversion is taking place, in line with respective network semantics (Definition 9).

Definition 9 (HFN-network flow) Let H = (VM ,AM ,V , LM , θ ,ψ) be a heterogeneous multigraph with bidi-
rectional intra-layer arc set AA ⊆ AM . Given flow network Hf = (H , c, s, t) , a heterogeneous network flow fh is a 
flow function fh : AA → R

+
0  , satisfying the following constraints: 

 (i) Capacity constraint: 

(8)ω̄(tu,v) =ω(u, v).

Figure 2.  Simplified illustration of heterogeneous flow network and network transformation. (a) Heterogeneous 
flow network Hf  and split node u, split into two distinct nodes u and ũ , residing in two layers α , α̃ , and 
forming link (u, ũ) , which acts as exogenous arc with respect to the sink layer α̃ (mapped to single-source s̃ as 
flow circulation). (b) Transformation of heterogeneous flow network (left-hand side), to line-graph Petri net 
equivalent (right-hand side), where arcs (lines) match transition nodes (bars), while nodes (dots) match places 
(circles) with corresponding end node transitions. Single-source and single-sink arcs, (s, u) and (v, t) , are 
mapped as transition nodes only, corresponding to sources and sinks of exogenous flow. (c) Breakdown of line-
graph Petri net equivalent of network in panel a, with corresponding set of relations, where highlighted objects 
encode: conservation of mass (left-hand side), and flow balance (right-hand side). (d) Illustration of incidence 
matrix transformation, corresponding to networks in panels a and c, where At corresponds to graph incidence 
matrix of network in panel a  (unweighted, except for link (u, ũ) ), while C corresponds to Petri net incidence 
(coupling) matrix of network in panel c. The relationship can equivalently be written as: [C]ũ,l = −at(ũ, l̃) , if 
l = (u, v) ∈ AA , l̃ = (u, ũ) ∈ AC , and [C]ũ,l = −at(ũ, l) , otherwise, where (u, ũ) ∈ AC is an inter-layer coupling 
of weight k : AC → R , while at(u, l) = [At ]u,l is an element of otherwise unweighted incidence matrix At of Hf  , 
and C the incidence matrix of Pf  . (e) Illustration of bidirectional arc and corresponding Petri net transformation, 
where net flow flows either in positive or negative direction. (f) Illustration of positive (left-hand side) and 
negative (right-hand side) flow conversion, corresponding to relationship of multimodal node u to sink layer 
α̃ , as a form of source or sink assignment, respectively (linked to source layer firing rate � ). (g) Illustration of 
transpose flow, corresponding to a flow conversion with respect to complementary sink layers α, α̃ (linked to 
complementary source firing rates �, �̃).

◂
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 (ii) Conservation of flow: 

 (iii) Complementarity constraint (direction of flow): 

where (ṽ, ũ) , (ũ, ṽ) are inflow and outflow arcs of node ũ in layer α̃ , respectively, (u, v) are outflow arcs 
of node u in layer α , and (u, ũ) ∈ AC are coupling links of weight k, participating in flow conversion ∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑
{v|(u,v)∈AA}

fh(u, v)).
Relations (9)–(11) in Definition 9 are a generalization of relations in the definition of network flow (Defini-

tion 1). The HFN-Petri net transformation (Definition 8) enables, furthermore, a unified formal treatment of 
both conservation and coupling relations in a compact state space form, encoded in an abstract mathematical 
object. This correspondence preserves, among others, equivalence of flow balance relations (Theorem 1), simplify-
ing derivation of relation (10), as presented next.

Theorem 1 (Flow balance relations—equivalence) Let � be the vector [�(t)]t∈T = [fh(u, v)](u,v)∈AA, where 
(u, v) ∈ AA are listed according to the order chosen for transitions tu,v ∈ T , then for all ũ ∈ P

Proof To prove statement (Eq. 12), let us begin with the left-hand side of the relation. By definition of incidence 
matrix C, the construction can be rewritten as C� = Pos�− Pre� , where Pos is an incidence function specifying 
weights from transitions to places, and Pre an incidence function specifying weights from places to transitions. 
Based on Eqs. (3)–(6), the construction can be rewritten in expanded form as

for ∀ũ ∈ P , producing for [Pos�]ũ − [Pre�]ũ the following set of relations

which for �(tu,v) = fh(u, v) returns (12).   �

Remark 2 For a flow network Hf  associated to Petri net Pf  by transformation Tf : Hf → Pf  and relation (12), 
the following statements hold: (i) fh fulfils condition (9) iff 0 ≤ � ≤ �̄ , following from the definition of fir-
ing rate capacity bound (Eq. 7); (ii) fh fulfils condition (10) iff the corresponding � vector fulfils C� = 0 ; (iii) 
if there exists a firing rate � such that conditions (9) and (10) are satisfied, then there exists a firing rate �̃ 
such that conditions (9)–(11) are satisfied as well, and vice versa, as fulfilled by the standard construction 
�̃(tu,v) = max{0, �(tu,v)− �(tv,u)} ; (iv) solutions of q̇ = q̇(fh) , where q̇(fh) corresponds to the left-hand side of 
relation (10), are solutions of Q̇ = C� given Eq. (12), where q̇ relates to instantaneous flow balance at each com-
partment ũ of a positive compartmental  system39, with exogenous flow determined by all terms relating to arc 
sets AC and AA \ AĀ , while remaining flow balance is determined by all residual terms. The relationship proves 
HFN-PN dynamic equivalence.

From Theorem 1 and Remark 2, it can be deduced that stationary firing rate � of a Petri net directly cor-
responds to multilayer network flow fh of an HFN. Incidence matrix C is bidirectional, with direction encoded 
in oppositely facing transitions (Fig. 2e). The link coupling direction may thereby exhibit two distinct forms, 
where positive or negative flow conversion (Fig. 2f) encodes the relationship of a multimodal node with each 
layer (as a form of source or sink assignment, respectively). Transpose flow (Fig. 2g), on the other hand, refers 
to a complementary relationship between participating layers, in the sense of the notion of a transpose relation. 
Incidence matrix C ultimately encodes relationships between nodes in different layers, with network flow acting 
as a form of algebraic tool, where time complexity of relation (12) rests on matrix-vector multiplication and is 
at most O(nm) , such that n is the graph order and m the graph size.

Overall, the key property of the proposed framework lies in the ability to derive multimodal flows across dif-
ferent types of network layers, in a compact unified form. Inter-layer flow conversion takes place across network 
links, which act as exogenous control flows with respect to the sink layer. The multimodal flows are implicitly 
either coupled (across layers) or uncoupled (in intra-layer flow derivation, specifically with regard to cycle space 
conditions, as presented next). This property lends some new perspective to network interdependency assess-
ment, such as e.g., with respect to flow based  centrality43–45, system stability or reachability of  states38. What is 
important to note is that the proposed framework satisfies concurrently conditions of conservation and coupling 

(9)0 � fh(ũ, ṽ) � c(ũ, ṽ),∀(ũ, ṽ) ∈ AA

(10)

∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑

{v|(u,v)∈AA}
fh(u, v))

+
∑

{ṽ|(ṽ,ũ)∈AA}
fh(ṽ, ũ)−

∑

{ṽ|(ũ,ṽ)∈AA}
fh(ũ, ṽ) = 0,∀ũ ∈ VM \ {s, t}

(11)fh(ũ, ṽ) · fh(ṽ, ũ) = 0, {∀(ũ, ṽ) ∈ AA | (ṽ, ũ) ∈ AA}

(12)

[C�]ũ =
∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑

{v|(u,v)∈AA}
fh(u, v))+

∑

{ṽ|(ṽ,ũ)∈AA}
fh(ṽ, ũ)−

∑

{ṽ|(ũ,ṽ)∈AA}
fh(ũ, ṽ).

[Pos�]ũ =
∑

{ṽ|tṽ,ũ∈T}
�(tṽ,ũ)+

∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑

{v|tu,v∈T}
�(tu,v))

[Pre�]ũ =
∑

{ṽ|tũ,ṽ∈T}
�(tũ,ṽ)−

∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑

{v|tu,v∈T}
�(tu,v))

[C�]ũ =
∑

{u|(u,ũ)∈AC}
(k(u, ũ) ·

∑

{v|tu,v∈T}
�(tu,v))+

∑

{ṽ|tṽ,ũ∈T}
�(tṽ,ũ)−

∑

{ṽ|tũ,ṽ∈T}
�(tũ,ṽ),∀ũ ∈ P
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of flow across network semantics. This is in contrast to current state-of-the-art, as presented in e.g.26,27,46, where 
the main processes studied to date relate to epidemic spreading and single-mode information  diffusion8,47,48. 
This renders the proposed framework more applicable to certain other types of multilayer network problems, 
as presented next.

Illustrative examples: synthetic and real-world networks
To demonstrate application potential and illustrate implementation of the proposed framework, different exam-
ples of multilayer heterogeneous network flow are presented. The varied range of examples is thereby aimed 
at displaying generality and breadth of framework application. Further extensions related to domain specific 
applications are introduced as well.

Laplacian flow. To demonstrate implementation of the proposed framework in uncovering importance 
of specific network components, an illustrative example of flow based random walk node betweenness central-
ity CRW

44 is presented. The Petri net flow relations (statement (i)–(iv), Remark 2) are here extended, to apply 
to a broader range of application domains, such as random walks, which correspond to a simple type of linear 
dynamic flow, also known as Laplacian flow39,49. The Petri net flow relations are thereby complemented by node 
potential balance (cycle space) conditions (along the lines of the notion of fundamental cycles over  states38), in 
a form afforded by Definition 8, as

where BT = B̃Tdiag(w) is the weighted image of any basis B̃ of null-space N(Ai
t) , for each (unweighted) incidence 

matrix Ai
t of network H and relevant layer i ∈ {1, . . . , b} , while w(u, v) = ω(u, v)−1 is the weighted length of each 

intra-layer arc (u, v) ∈ AĀ(tu,v ∈ T) . The condition is explicitly added using topological graph theory and the 
fundamental theorem of linear  algebra36, i.e.: (i) the cycle space is a Ker(Ai

t) , of dimension m− n+ 1 ; (ii) the 
cut space is an Im(AiT

t ) , of dimension n− 1 ; (iii) Ker(Ai
t)⊥Im(AiT

t ) and Ker(Ai
t)⊕ Im(AiT

t ) = R
m . Relation (13) 

corresponds to a cycle space condition for all related cycles h ∈ HA of a weighted connected graph, where for an 
HFN of b layers, |HA| = |EA| − |VM | + 2 · b , as derived  from50. The condition conforms to steady state require-
ments of a donor-controlled compartmental system39, where an arc flow is a function of mass q in the originating 
compartment u, for each u ∈ VM \ {s, t}(u ∈ P) . The flow is governed by the rate of mass transfer, equivalent to 
ω , and the amount of exogenous flow U from the environment i.e.,

where q is a donor mass vector and � a compartmental matrix which is Metzler i.e., [�]u,v = ω(v, u) , u  = v , 
[�]u,v = −

∑
r,u �=r ω(u, r) , u = v . It is worth pointing out that in a random walk arc weights are symmetric i.e., 

ω(u, v) = ω(v, u) for each arc. The proposed framework, however, supports asymmetry in arc weights as well 
i.e., ω(u, v)  = ω(v, u) , which is a more general case. Computational complexity of relation (13) is dictated by 
Gaussian elimination in producing the basis of the incidence matrix null-space, which has an arithmetic com-
plexity of O(n3) , where n is the graph order, while time complexity is algorithm dependent and is polynomial 
(using standard algorithm forms). Overall, the proposed framework introduces a form of multilayer Laplacian 
flow. By comparison, state-of-the-art Laplacian flow applied to multilayer network  structures46 does not capture 
the notion of coupling (conversion) between different semantic domains. It is hence not applicable to many 
physical problems which rely on laws of flow and mass conservation (e.g., energy networks, chemical processes, 
financial transactions, etc.), compared to the proposed framework, as demonstrated in the following example.

The multilayer network selected for the illustrative example (Fig. 3a), may in a broad sense represent a 
resource shipped from source s′ to sink t ′ of a source layer α′ , according to an arc weight ω (interpretable also as 
transition probability, arc preference, or conductance). The shifting of the resource may generate further outputs 
in form of e.g., products, revenues, mechanical force or similar, with respect to the sink layer α′′ , obtained based 
on a conversion coefficient k. For the sake of generality, one or both layers may be assumed to meet (Eq. 13). The 
approach is thereby general enough to represent a number of equivalent problem formulations. In this particular 
case the object in Fig. 3a represents an energy network, comprising of a three tank energy resource layer α′ (node 
1′, 2′ and 3′ ), and a two generator power conversion layer α′′ (node 1′′ and 2′′ ). Both layers have exogenous sources 
and/or sinks, referring to inflow (generation) or outflow (demand), respectively. The flow in both layers is a lin-
ear function of donor mass, where in layer α′ the proportion refers to a constant discharge rate ω(u′, v′) = 0.5 , 
∀(u′, v′) ∈ AĀ, u

′, v′ ∈ V ′
M , while in layer α′′ it refers to conductance ω(u′′, v′′) = 0.1 , ∀(u′′, v′′) ∈ AĀ, u

′′, v′′ ∈ V ′′
M 

( V ′
M ∪ V ′′

M ⊆ VM , Definition 7). Coefficient k refers to a conversion constant.

Node centrality and flow interpretation. The state of each node in Fig. 3a can be determined from a steady state 
solution of the random walk evolution process, where based  on46, k would be considered a weight ω (a form 
of layer switching probability), resulting in Fig. 3b. For the presented class of problems, however, the lack of 
 approach46 lies in the fact that each edge of the multilayer network is given uniform treatment, and no distinc-
tion is made with respect to inter-layer coupling in the derivation of flow (compare Fig. 3c,d, relating to Fig. 3a,b, 
respectively). First of all, the induced inter-layer interaction is a flow conversion (Definition 9) and does not 
participate in conservation of flow of the source layer, but it does participate in overall conservation of mass. Sec-
ondly, the flow conversion acts as exogenous flow with respect to the sink layer, influencing, along with network 
topology, the respective state probabilities or node potentials of the sink (Fig. 3c). The outcome in the first place 

(13)BT� = 0

(14)q̇ = �q+ U
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Figure 3.  Simplified illustration of multilayer network flow derivation. (a) Illustrative multilayer flow network, comprising of two 
layers α′ , α′′ , single-source s′ and single-sinks t ′ , t ′′ , where intra-layer flow is determined by arc weights ω′ , ω′′ , while inter-layer flow 
conversion is determined by conversion coefficient k. Multilayer network flow is derived as heterogeneous network flow, based on the 
proposed framework. The figure depicts, furthermore, the corresponding flow based random walk node betweenness centrality CRW
44, derived as node flow throughput, normalized by maximum st-flow (note that the measure is a function of network flow). Highest 
centrality denotes node(s) with highest impact, importance or influence. (b) Multilayer network flow derived as a simple mono-
semantic random walk, based  on46. The figure depicts, furthermore, derivation of corresponding flow based random walk centrality 
CRW

44, as proposed  in46. By comparative analysis (panel a and b) a different network flow is observed. The difference is reflected in 
node centrality (highest impact/importance) as well, where removal of the highest centrality node in the first network  (panel a: node 
3′ in layer α′ ), would result in a collapse of the entire network, given removal of the only sink (demand) node in layer α′ (reducing 
all flows to 0, due to flow balance and coupling constraints). In the second network (panel b), however, the removal of the highest 
centrality node would only result in a flow rebalance, not reflecting the true coupling nature of the underlying evolution process. (c) 
Flow conservation and coupling (as satisfied by the proposed framework in panel a), where inter-layer coupling does not participate 
in conservation of flow of the source layer. The coupling acts as exogenous flow with respect to the sink layer, influencing, along 
with network topology, the respective node potentials. The panel contains also an example of basis matrix B corresponding to the 
network in panel a. (d) Flow conservation (and coupling) inconsistent (violated), for simple mono-semantic random walk approach 
to multimodal flow derivation in panel b (note that arc (1′, 1′′) is an inter-layer arc, where incident end nodes correspond to different 
layer semantics).
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is a different result obtained for network flow (Fig. 3a), which directly affects derivation of the corresponding 
flow based centrality measure CRW

44, as

where τst(u) corresponds to flow throughput of node u, normalized by maximum st-flow. The second difference 
relates to centrality measure interpretation (Fig. 3a,b), given that inter-layer mapping of flow has different effects 
on different layers, i.e.: it affects the corresponding sink layer (as exogenous flow), however, it does not affect 
the source layer it “originated” from. The difference is evident in obtained node centrality (impact/importance) 
rankings, where removal of the highest centrality node in Fig. 3a (node 3′ in layer α′ ) would result in a collapse 
of the entire network (given removal of the only sink or demand node in layer α′ , reducing all flows to 0, due to 
flow balance and coupling constraints). In Fig. 3b, however, the removal of the highest centrality node would 
result in a flow rebalance only, not reflecting the true coupling nature of the underlying evolution process. The 
proposed framework extends therefore differently the notion of flow based centrality to multilayer flow type 
networks, providing therewith a new perspective to multilayer flow based assessments.

To highlight the benefits of multilayer flow derivation and demonstrate properties of flow based centrality 
further, an additional comparative analysis is presented, with respect to a classic type of centrality i.e., geodesic 
centrality. As a convenient candidate to the flow based counterpart, classic node betweenness centrality is assessed. 
Node betweenness  centrality44 is derived as CBC(u) =

∑
s �=u �=t∈V σst(u)/σst , or the share of times a node u 

participates in the number of shortest paths σst between single-source s and single-sink t of a network, where 
a shortest path is obtained as a path of minimum weighted length, along a sequence of non-repeating nodes 
and edges. It is easy to see that each node in Fig. 3a,b participates equally in each shortest path of the network, 
resulting in a uniform node betweenness centrality CBC across nodes. Ultimately, no distinction is made between 
functional properties of nodes, where again the most critical node is not identified, as opposed to the ranking 
derived from flow based random walk node betweenness CRW . It is here worth stressing that geodesic central-
ity, unlike flow based centrality, is concerned with topology only and follows a shortest path intuition. In most 
networks, however, transition does not unfold along geodesic trajectories and is often dictated by node potentials 
and exogenous forces, as demonstrated in Fig. 3c. To highlight the difference, the example is expanded with an 
assessment of the classic node betweenness centrality (as one type of geodesic centrality), to demonstrate dis-
advantages of disregarding flows in centrality evaluations of flow type problems.

Graph learning—relationship inference. Application of the proposed framework can also be found 
in the domain of graph learning51, specifically in inference of multilayer relationships over multimodal data. 
Graph learning aims at uncovering structure in data through network inference, where relationships between 
data points are encoded in the network topology, while data points themselves are represented as node signals. 
Models can be statistical, physical or graph signal processing  based51, where for the example described in this 
subsection a simple implementation of an adaptive gradient based steepest descent method is presented for 
illustrative purposes, to demonstrate application potential of the proposed framework. To this end, a synthetic 
dataset is derived based on Eq. (14) and Fig. 4a, where q corresponds to graph node signals perturbed by addi-
tive (uniformly distributed) zero-mean noise, while U refers to independent realizations of labelled outcomes, 
interpretable also as exogenous flow. The model of finding relationships � over features q can be formulated as 
a least mean square (LMS) or Widrow-Hoff adaptive  algorithm52, where the optimal weigh matrix � solving 
minω E|U +�q|2 can be approximated via recursion

such that �−1 is an initial guess, i an iteration step corresponding to observation i, and µ a sufficiently small 
constant step size. Feature vector qi and outcome vector Ui , are both centred and normalized by observation 
(ensemble) i for adaptive updates.

It is worth noting that, unlike a supra-Laplacian2, which is only an augmented Laplacian matrix over links 
and layers in flat form, the weight matrix � contains conversion ratios of the multimodal relationship as off-
diagonal block elements, where

such that inter-layer relationships participate in the derivation of the layer structure, as off-diagonal exogenous 
block entries (Eq. 18), while layers are identified from diagonal block matrices (Eq. 17) (Fig. 4b). The inference 
algorithm is consequently layer invariant, while identification of mono or multilayer structure resides in inter-
pretation of the obtained weight matrix � (e.g., zero column and/or row block matrix sums, Fig. 4).

Ultimately, the proposed framework is capable of picking up a layered (exchange & conversion) as opposed 
to a flat (exchange only) relationship structure, in relationship inference performed on multimodal time series 
data. If, for instance, the six nodes in the example corresponded to financial time series, there would be no clear 
semantic feature distinction, yet a layered structure would exist (as layer 2, the bottom layer, accrues interest/

(15)CRW (u) =
∑

s,t∈V
τst(u)

(16)�i = �i−1 − µ[Ui +�i−1qi]q
T
i , i ≥ 0

(17)[�]u,v =

{
−
∑

r,u �=r ω(u, r), if u = v

ω(v, u), if u �= v

(18)[�]ũ,v =






�
u(k(u, ũ)

�
r,u �=r ω(u, r)), if u = v, (u, ũ) ∈ AC , q(u) > q(r)�

u k(u, ũ)ω(v, u), if u �= v, (u, ũ) ∈ AC , q(u) > q(v)
0, otherwise
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exogenous inflow from layer 1, the top layer). It is worth noting that the relationships within each layer are dif-
ferent to the relationships between the layers, which can erroneously be omitted by a classic flat relationship 
inference approach. The proposed framework, however, enables capturing such complex network topology and 
the underlying relationships, without any a priori knowledge about the underlying data sets.

Algorithms and model interpretation. Overall, the LMS algorithm corresponds to a simple implementation of 
an adaptive gradient based steepest descent method, where signal statistics are replaced by suitable approxima-
tions (here instantaneous values) and convergence is dictated by step size. Different approximations may lead 
to different algorithms and  performance52, where step size can be iteration dependent and regularization may 
be employed. The presented example is only illustrative, aimed at demonstrating capabilities of the proposed 
framework (where the performance of the implemented LMS algorithm could be further improved, though this 
is outside of the scope of the present manuscript). The key message conveyed is that the proposed framework 
opens up a new direction for graph learning based applications, by introducing a new type of mathematical 
object, where other types of relationship inference and graph learning algorithms will be explored separately, as 
part of future work.

It is here worth stressing that a form of graph learning over multilayer networks has been explored in recent 
 work53, with reference to Structural Equation Models (SEMs), in form of multilayer SEMs (ml-SEMs). It is, 
however, worth noting that the proposed HFN framework is a generalization  over53, where ml-SEMs represent 
a special case of HFNs, such that 

∑
ri ,ui  =ri ω(u

i , ri) = 1 . Where layers represent temporally lagged snapshots of 
a monoplex, the proposed framework can be interpreted as a Structural Vector Autoregressive Model (SVARM), 
as  in53.

Figure 4.  Simplified illustration of heterogeneous multilayer flow network (relationship) inference. (a) 
Illustrative heterogeneous multilayer flow network, with known features (nodes {1′, . . . , 3′′} ), and labelled 
outcomes (exogenous arcs {(s′, 1′), . . . , (3′′, t′′)} ), by observation i (black), as well as unknown topology (grey) 
depicted as ground truth (corresponding to weights). Note that block matrix K is flow dependent (Eq. 18). 
(b) Derived multilayer network topology, based on LMS adaptive algorithm applied to dataset corresponding 
to panel a. Ensemble-average learning curve, MSEi = 1/R

∑
R[Ui +�i−1qi]

2
R

52, corresponding to algorithm 
performance, obtained over 30 experiments R. Note that exogenous block entries of � (corresponding 
to K) relate to conversion of centred data. When solving for e.g., multilayer network flow, this would not 
pose a limitation, as one could derive the node potentials q based on the obtained weight matrix � (i.e., its 
pseudoinverse) and the given exogenous flow U. Ultimately, this would not distort the flow derivation, as 
potentials are fixed to within a constant (here average). Derivation of exact conversion coefficients k, however, 
would require additional constraints and a different approach, which is outside of scope for now.
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Network robustness—U.S. GDP by industry. To demonstrate application of the proposed framework 
on a real-world multimodal flow network, the network of GDP by Industry, U.S. Bureau of Economic Analysis 
(BEA)54 is analysed, and also put into perspective with ml-SEM53. The  dataset54 contains cross-industry use 
of commodities and GDP gross output by industry, over 71 industries, 21 industry groups, and a time range 
1997–2019, expressed in millions of dollars. To simplify further exposition, a simple example (Fig. 5) is used 
as a guide throughout this subsection, in form of a proxy equivalent  to54. The studied dataset (Fig. 5b) consists 
of domestic supply (rows) and use (columns) of commodities by industry (nodes), in form of a flow matrix F, 
by corresponding year α . Supply relates to node potentials in this case, where rate of transfer (arc weight) ω is 
derived from cross-industry flow, as a share of compartmental (supply) outflow (Fig. 5a). Compartmental weight 
matrix � is derived from the rate of transfer ω (Fig. 5c), where 

∑
ri ,ui  =ri ω(u

i , ri)  = 1 for certain nodes (see � 
diagonal), as some funds get reinvested over time or further exogenous investments are introduced (see F diago-
nal). Inter-layer coupling corresponds to transformation of net output by industry, where conversion k refers 
to a proportion defined with respect to e.g., rate of return. Multilayer structure comes hence from economic 
activity (Fig. 5a,b,d), rather than industrial clustering suggested  in53. Each layer can therewith be interpreted as 
a snapshot in time, or equivalently as a Petri net state (Fig.  5a,e,f).

Figure 5.  Simplified illustration of multilayer flow network (proxy), equivalent to the dataset of U.S. GDP by 
 industry54. (a) Illustrative multilayer flow network interpretation, corresponding to  dataset54. Nodes correspond 
to industries, while arcs and links correspond to economic activity (cross-industry and cross-layer network 
flow). Conversion coefficient k refers to a proportion defined with respect to e.g., rate of return, where layers α′ , 
α′′ correspond to years (note that the network could be represented in compact form as well). Rate of transfer 
arc weights ω are derived from supply and cross-industry network flow. Note that a node (e.g., node {1′} ), 
participates in domestic output and supply of commodities required by other industries (expressed in monetary 
terms), where total supply relates to node potential. The generated output participates, furthermore, in value 
added and capital carried over to the next time instance (i.e., node {1′′} ). (b) Illustration of cross-industry 
network flow matrix F, corresponding to  dataset54 (as derived from the corresponding manual “Concepts and 
Methods of the U.S. Input-Output Accounts”,  200954). The dataset consists of domestic supply (rows) and use 
(columns) of commodities by industry (intermediate use of commodities, net of contributions and subsidies). 
Note  that53 relates total use, as opposed to total supply, to node potentials. (c) Compartmental weight matrix � , 
derived from rate of transfer arc weights ω . Note that 

∑
ri ,ui  =ri ω(u

i , ri)  = 1 (see weight matrix � diagonal) for 
some nodes (i.e., nodes {1′, 3′, 1′′, 2′′} ), as some funds get reinvested over time or further external investments 
are introduced (see flow matrix F diagonal). (d) HFN multilayer flow network excerpt (incident with nodes 
{1′, 1′′} ), as derived from panel b. (e) Petri net equivalent of HFN multilayer flow network excerpt incident 
with nodes {1′, 1′′} . (f) Incidence (coupling) matrix C, encoding intra-layer and inter-layer relationships, 
corresponding to network in panel a. Note that weights (Pre, Pos) in the Petri net equivalent, are 1 for intra-layer 
(identity), and k for inter-layer conversion. (g) Example of flow based random walk node betweenness centrality 
CRW derivation, for nodes {1′, . . . , 4′′}.
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To derive the exact conversion coefficient k, one requires information about the capital carried over from a 
previous time instance and the additional investment at a given time (compare nodes 1′′ and 2′′ , Fig. 5a,b; both 
nodes have nonzero F diagonal entries). From there, k is derived as a proportion between exogenous outflow from 
the previous time instance and accrued capital in the next one (Fig. 5a,d). The value added may correspond to e.g., 
accrued interest, which would not be captured by a traditional approach, e.g.46. The proposed framework, in con-
trast, enables a multilayer flow interpretation of economic activity  in54, uncovering some interesting properties.

Economic robustness and industry ranking. The derived network equivalent finds first of all interpretation in the 
domain of Stochastic Petri nets (SPN), where an SPN with given transition rates induces a Markov chain on its 
reachable  set38. One can hence derive a corresponding steady state probability distribution, where elements refer 
to probability of being in a state Qi (here node potentials q on a layer αi).

One can, furthermore, derive a flow based random walk node betweenness centrality CRW for each industry, 
directly from cross-industry and cross-layer flow (Figs. 5g, 6b). It is here interesting to note that all industries 
exhibit a consistent centrality over a 23 year time span (Fig. 6b,c), regardless of domestic output fluctuation 
(Fig. 6a). This means that the relative importance of each industry i.e., the relative monetary throughput with 
respect to other industries and even with respect to a different monetary volume and economic environment 
(i.e., the 2008 economic crisis), remains absolutely the same, which suggests some form of relative network (i.e., 
economic activity) robustness. The industry ranking based on random walk node betweenness centrality CRW 
is also more stratified (Fig. 6b), as opposed to domestic output ranking alone (Fig. 6a), where it should be noted 
that the centrality ranking takes both, domestic output and supply of commodities by industry (Fig. 5a,g), into 
consideration. The proposed framework is compared with the real situation, and introduces a multilayer network 
flow interpretation of U.S. GDP by industry. The resulting node centralities, as a network theory tool, provide 
insights on the relative importance of each industrial sector, revealing consistency among relative positions 
of industries over a time period of more than two decades, and a finer more stratified ranking as compared to 
domestic output ranking alone. They identify therein five key industrial sectors (Fig. 6b), their relative positions 
in monetary throughput, as well as relative robustness under different economic environments (consistent cen-
trality, Fig. 6b,c, regardless of domestic output fluctuation, Fig. 6a), where exogenous flows are interpretable as, 
and act in form of, control inputs. The proposed framework effectively captures the role of nodes (industries) as 
not necessarily generators of outputs (products) alone (as measured by the classic gross domestic output ranking, 
Fig. 6a), but also as suppliers of commodities required by other industries (as captured by the proposed frame-
work and the implemented flow centrality ranking, Fig. 6b,c), providing entirely new insights on an economy, 
its industries, their importance, and relative robustness.

Discussion and outlook
The presented examples demonstrate some of the benefits of multimodal flow derivation in complex network 
analysis. Inter-layer flow conversion takes place across network links, which act as exogenous control flows with 
respect to the sink layer. The multimodal flows are implicitly either coupled (across layers) or uncoupled (in 
intra-layer flow derivation, specifically with regard to cycle space conditions). This property lends some new 

Figure 6.  Illustration of random walk node betweenness centrality, for  dataset54. (a) Heat map of domestic 
output by industry (net of contributions and subsidies), by year and 21 industry group, for  dataset54. Note the 
fluctuations, particularly fall in domestic output for 2009 as a consequence of the 2008 economic crisis. (b) Heat 
map of random walk node betweenness centrality CRW , by year and 21 industry group, for  dataset54. Highest 
centrality is observed in 5 groups (Manufacturing—Durable, Non-durable; Finance—Insurance, Real estate; and 
Professional—Scientific & Technical services). The centrality highlights relative position of depicted industry 
groups, in terms of monetary throughput. (c) Mean, µc , and standard deviation, σc , of centrality CRW , over the 
time range 1997–2019, for all industry groups. The results demonstrate a consistent centrality over a 23 year 
time span (see σc ), where relative importance of industries (i.e., their relative monetary throughput with respect 
to other industries, and even with respect to a different monetary volume and economic environment i.e., the 
2008 economic crisis) remains absolutely the same, which suggests some form of relative network (i.e., economic 
activity) robustness.
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perspective to network interdependency assessment. Furthermore, establishing correspondence between two 
apparently distinct conceptual domains brings new insights to both formalisms, as the tools and models of one 
can be used to develop an understand tools and models of the other, and vice versa. As previously mentioned, the 
heterogeneous flow network enables derivation of a layered relationship structure (corresponding to connectivity 
and conversion of node data), as opposed to a classic flat relationship structure (corresponding to connectivity 
of node data only). This enables a physical interpretation of models with complex interactions between different 
semantic domains (e.g., chemical processes, energy networks, logistics, finance, or any other form of conver-
sion process relying on the laws of conservation), in the form of multilayer network flows. Disregarding such 
context may lead to erroneous interpretations, as demonstrated in the presented examples. The Petri net, on the 
other hand, enables flattening of the layered relationship structure (not to be confused with the latter, classic 
flat relationship representation). The construction simplifies computation, as it reduces the complex multilayer 
network to a form of bipartite graph (of resource and transition nodes), at the expense of losing semantics. 
As the proposed framework, however, establishes reversible correspondence between the two mathematical 
objects, interpretation is always preserved and outputs can uniquely be transformed from one mathematical 
object to the other. In a hypothetical ’ablation’ analysis sense, Petri nets are needed to facilitate computation, 
while heterogeneous multilayer flow networks provide interpretation and access to well-established network 
theory tools. Removing flow from the formulation would leave a very limited scope for quantitative assessments 
(i.e., disregarding node potentials and exogenous forces), which would inhibit reasoning, as it would remove 
the building blocks of the underlying relationship structure (e.g.: feature vectors and labelled data, respectively; 
node probabilities with respect to random walks on multilayer networks; mutual relationships between nodes 
and exogenous control flows; etc.). It is also worth adding that the proposed framework produces outputs that 
are analytically obtained and are fully interpretable.

In prospect, one of the anticipated goals is to give further attention to the extraction of the exact conversion 
coefficient k in graph learning based relationship inference (learning based function approximation) problems. 
From a synthesis point of view it is clear that, at least in some cases, k is uniquely determined. Further interest-
ing insights could be obtained through possible integration of nonlinear relationships and dynamic topology 
considerations within the proposed framework, drawing on rich literature from current state-of-the-art.

Conclusion
In this paper the formal notion of heterogeneous network flow is proposed, as a multilayer flow function aligned 
with the theory of network flow. A dynamic equivalence with the framework of Petri nets is established, as the 
baseline model of concurrent event systems. The Petri net flow relations are here extended, to possibly incor-
porate both fundamental equations of balance, namely: flow balance, which is integral to the Petri net model, 
and node potential balance (cycle space condition), which may arise in relation to specific application domains. 
Overall, the key property of the proposed framework lies in the ability to derive multimodal flows across differ-
ent semantic domains, satisfying conditions of cross-layer conservation and coupling. The proposed framework 
provides therewith an extension to the recently introduced field of multilayer networks.

Some covered applications include multilayer Laplacian flow and multilayer flow centrality, as well as graph 
learning based inference of multilayer relationships over multimodal data. On synthetic data the proposed frame-
work demonstrates benefits of multimodal flow derivation in critical component identification. It also displays 
applicability in relationship inference (learning based function approximation) performed on multimodal time 
series. On real-world data the proposed framework provides, among others, multimodal flow interpretation of 
U.S. economic activity, uncovering underlying empirical steady state probability distribution, as well as inherent 
network (economic) robustness.
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