320 research outputs found

    Ultracold dipolar gases - a challenge for experiments and theory

    Full text link
    We present a review of recent results concerning the physics of ultracold trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both cases we stress the dominant role of the trap geometry in determining the properties of the system. We present also results concerning bosonic dipolar gases in optical lattices and the possibility of obtaining variety of different quantum phases in such case. Finally, we analyze various possible routes towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the Nobel Symposium ''Coherence and Condensation in Quantum Systems'', Gothesburg, 4-7.12.200

    Instabilities and the roton spectrum of a quasi-1D Bose-Einstein condensed gas with dipole-dipole interactions

    Full text link
    We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a `roton' minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect to tune the depth of this `roton' minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.Comment: 7 pages, 6 figures. Special Issue: "Ultracold Polar Molecules: Formation and Collisions

    Spontaneous mode non-invasive ventilation fails to treat respiratory failure in a patient with Multi-mincore disease: a case report

    Get PDF
    The increased morbidity and mortality resulting from respiratory failure in patients with neuromuscular disorders and/or kyphoscoliosis can be reversed with non-invasive ventilation. Spontaneous mode bilevel pressure ventilation is preferred to other modes of ventilation, due to relative ease of use, but may not be suitable for all patients. We report a 27-year old woman with Multi-minicore disease whose respiratory failure was refractory to spontaneous mode bilevel pressure ventilation. When we altered settings and provided mandatory inspiratory rise time and respiratory rate, it augmented her respiratory efforts and improved ventilation. Our case report describes the benefit of individualising non-invasive ventilation in the management of respiratory failure due to neuromuscular weakness and kyphoscoliosis

    Microwave traps for cold polar molecules

    Full text link
    We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm^3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a clear path to producing large samples of polar molecules at temperatures much lower than has been possible previously.Comment: 10 pages, 3 figure

    Three-dimensional jamming and flows of soft glassy materials

    Get PDF
    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm

    Probing the classical field approximation - thermodynamics and decaying vortices

    Full text link
    We review our version of the classical field approximation to the dynamics of a finite temperature Bose gas. In the case of a periodic box potential, we investigate the role of the high momentum cut-off, essential in the method. In particular, we show that the cut-off going to infinity limit decribes the particle number going to infinity with the scattering length going to zero. In this weak interaction limit, the relative population of the condensate tends to unity. We also show that the cross-over energy, at which the probability distribution of the condensate occupation changes its character, grows with a growing scattering length. In the more physical case of the condensate in the harmonic trap we investigate the dissipative dynamics of a vortex. We compare the decay time and the velocities of the vortex with the available analytic estimates.Comment: 7 pages, 8 eps figures, submitted to J. Optics B for the proceedings of the "Atom Optics and Interferometry" Lunteren 2002 worksho

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    An apoplastic peptide signal activates salicylic acid signalling in maize

    Get PDF
    Control of plant pathogen resistance or susceptibility largely depends on the promotion of either cell survival or cell death. In this context, papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we present the discovery of an immune signalling peptide, Zea mays immune signalling peptide 1 (Zip1). A mass spectrometry approach identified the Zip1 peptide being produced after salicylic acid (SA) treatment. In vitro studies using recombinant proteins demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor (PROZIP1). Strikingly, Zip1 treatment strongly elicits SA accumulation in maize leaves. Moreover, RNAseq based transcriptome analyses revealed that Zip1 and SA treatments induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic pathogen Botrytis cinerea in maize, while it reduces virulence of the biotrophic fungus Ustilago maydis. Together, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling

    Limits to scale invariance in alluvial rivers

    Get PDF
    Assumptions about fluvial processes and process–form relations are made in general models and in many site‐specific applications. Many standard assumptions about reach‐scale flow resistance, bed‐material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power‐law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse‐bed and fine‐bed reaches, whose different transport regimes can be traced to the different settling‐velocity scalings for coarse and fine grains. They also help identify two end‐member sub‐types: steep shallow coarse‐bed ‘torrents’ with distinctive flow‐resistance scaling and increased entrainment threshold, and very large, low‐gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions
    corecore