1,403 research outputs found

    Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations

    Full text link
    A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q1q\approx 1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1^1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m=1,n=1)(m=1,n=1) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β\beta is sufficiently high to provide the necessary drive for the (m=1,n=1)(m=1,n=1) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.Comment: submitted to Physics of Plasmas (23 pages, 15 Figures

    Evolution of the neutron quasi-elastic scattering through the ferroelectric phase transition in 93%PbZn1/3_{1/3}Nb2/3_{2/3}O3_3 - 7% PbTiO3_3

    Get PDF
    We show that the neutron diffuse scattering in relaxor ferroelectric (1-x)PbZn1/3_{1/3}Nb2/3_{2/3}O3_{3} - x PbTiO3_{3} (x=0.07) consists of two components. The first component is strictly elastic but extended in q-space and grows below 600 K. The second component, that was not reported before for the (1-x)PbZn1/3_{1/3}Nb2/3_{2/3}O3_{3} - x PbTiO3_{3} (x=0.07) relaxor ferroelectrics, is quasi-elastic with a line-width that has a similar temperature dependence as the width of the central peak observed by Brillouin spectroscopy. The temperature dependence of the susceptibility of the quasi-elastic scattering has a maximum at the ferroelectric transition

    СТРАТЕГІЇ НАВЧАННЯ ТА ОЦІНЮВАННЯ В УМОВАХ ДИСТАНЦІЙНОГО ВИКЛАДАННЯ ІНОЗЕМНИХ МОВ

    Get PDF
    The article deals with the leading strategies for organizing students’ learning and assessment in the distance teaching of foreign languages. The work analyzes available online teaching methods and forms, and the most optimal ways, types, and methods of assessing students’ work on the currently available online platforms. The authors claim that pedagogical approaches to teaching foreign languages constantly require the search for new tools that can bring an element of novelty to the educational process while simultaneously increasing the interest of applicants, especially during the current  (Covid-19) quarantine period.У статті розглянуто провідні стратегії організації навчання та оцінювання студентів в умовах дистанційного викладання іноземних мов. У роботі проаналізовано доступні  інтерактивні методики та форми навчання, узагальнено найоптимальніші способи, форми і методи оцінювання роботи студентів на онлайн-платформах, доступних у даний час. Автори стверджують, що педагогічні підходи до викладання іноземних мов постійно вимагають пошуку новітніх засобів, які здатні привнести в навчальний процес елемент новизни, підвищити інтерес здобувачів вищої освіти, особливо в період карантину

    Pseudo-laminar chaos from on-off intermittency

    Full text link
    In finite-dimensional, chaotic, Lorenz-like wave-particle dynamical systems one can find diffusive trajectories, which share their appearance with that of laminar chaotic diffusion [Phys. Rev. Lett. 128, 074101 (2022)] known from delay systems with lag-time modulation. Applying, however, to such systems a test for laminar chaos, as proposed in [Phys. Rev. E 101, 032213 (2020)], these signals fail such test, thus leading to the notion of pseudo-laminar chaos. The latter can be interpreted as integrated periodically driven on-off intermittency. We demonstrate that, on a signal level, true laminar and pseudo-laminar chaos are hardly distinguishable in systems with and without dynamical noise. However, very pronounced differences become apparent when correlations of signals and increments are considered. We compare and contrast these properties of pseudo-laminar chaos with true laminar chaos.Comment: 13 pages, 7 figure

    Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.

    Get PDF
    The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future

    An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

    Full text link
    Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and Future

    Seasonal progression of active-layer thickness dependent on microrelief

    Get PDF
    Introduction Active-layer thickness is a major factor for all physical and biological processes in permafrost soils. It is closely related to the fluxes of energy, water and carbon between permafrost landscapes and the atmosphere. Active-layer thickness is mainly driven by air temperature, but also influenced by snow cover, summer rainfall, soil properties and vegetation characteristics (Nelson et al., 1998). The typical polygonal tundra of the Lena Delta is characterised by a pronounced microrelief, which causes a high small-scale heterogeneity of soil and vegetation properties. Consequently, also the active-layer thickness varies substantially across small lateral distances of decimetres to metres. In order to up-scale results of process studies to the landscape scale, a quantification of the heterogeneity of active-layer thickness is of great interest
    corecore