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We show that the neutron diffuse scattering in relaxor ferroelectric �1−x�PZN−xPT �x=0.07�
consists of two components. The first component is strictly elastic but extended in q-space and
grows below 600 K. The second component, which was not reported before for the �1−x�PZN
−xPT relaxor ferroelectrics, is quasielastic with a linewidth that has a similar temperature
dependence as the width of the central peak observed by Brillouin spectroscopy. The temperature
dependence of the susceptibility of the quasielastic scattering has a maximum at the ferroelectric
transition. © 2008 American Institute of Physics. �DOI: 10.1063/1.2963474�

Complex perovskites with the chemical formula
PbB1/3Nb2/3O3 �B=Mg, Zn� are important materials for ap-
plications because they possess giant piezoelectric constants
when doped with PbTiO3 �PT�. The temperature-
concentration phase diagrams of PbMg1/3Nb2/3O3 �PMN�
and PbZn1/3Nb2/3O3 �PZN� are complex. The average crystal
structure of pure PMN is cubic at all temperatures. For small
concentrations of PT there is a phase transition from cubic to
rhombohedral symmetry at low temperature. Upon increas-
ing the amount of PT a morphotropic phase boundary that
separates the rhombohedral phase from a phase with
tetragonal symmetry appears at x=0.32 �Ref. 1� for
�1−x�PMN−xPT and x=0.08 �Ref. 2� for �1−x�PZN−xPT.
The dielectric permittivity of PMN and PZN has a broad
maximum around 265 and 320 K, respectively. At higher
temperatures the dependence of the refractive index of both
materials deviates from the expected linear dependence and
this was explained by the appearance in the crystals of polar
regions of nanometer size �PNR�.3 Evidence for the forma-
tion of PNR in �1−x�PMN−xPT and �1−x�PZN−xPT
comes from the presence of temperature-dependent diffuse
scattering �DS� close to the Bragg reflections observed by
both x rays and neutron diffraction. Upon approaching Tc,
the intensity of the diffuse scattering increases which sug-
gests that the PNRs grow and that the ferroelectric state in
the relaxor ferroelectrics is eventually reached when the
PNRs produce a spontaneous polarization in the same direc-
tion. Therefore it is of importance to understand the structure
and dynamics of the PNRs. The local structure of the PNRs
has still not be completely determined and whether or not the
local symmetry of the PNRs is lower than cubic already at
high temperature or undergoes a local phase transition above
or at Tc is a matter of debate.5,4 The diffuse scattering mea-
sured by neutron scattering in �1−x�PMN−xPT is not en-
tirely static but has an additional quasielastic �QE� compo-
nent that corresponds to the dynamics of the PNRs.6,7 For
PMN the intensity associated with the QE scattering was

found to follow the temperature dependence of the dielectric
permittivity.8 The central peak �CP� and the QE component
are also observed in doped PMN by neutron scattering,9 al-
though the CP intensity is weaker than in pure PMN. In
�1−x�PMN−xPT with x=0.32 the susceptibility of the QE
scattering increases below the Burns temperature and has a
broad maximum at the temperature where the cubic-to-
tetragonal phase transition occurs.9

�1−x�PMN−xPT and �1−x�PZN−xPT solid solutions
have comparable �x ,T�-phase diagrams and the dielectric re-
sponse of both undoped materials shows relaxor properties.
In PMN and in PZN, it was shown by neutron scattering that
the shape and the temperature dependence of the DS are
similar, and it was proposed in Refs. 8–10 that a random-
field model with cubic anisotropy could describe the physical
properties of both families of compounds. In the attempt to
propose a unified description of �1−x�PMN−xPT and �1
−x�PZN−xPT relaxors, an unsolved question is the behavior
of the QE part of the diffuse scattering. Hlinka et al. found
that the DS in �1−x�PZN−xPT with x=0.08 is truly elastic,
with any dynamics being slower than 8 GHz.11 This result
contrasts with those obtained by neutron scattering from
PMN and �1−x�PMN−xPT �x=0.32� where the QE compo-
nent has a lifetime varying between 0.05 and 0.2 THz as a
function of the temperature,6–9 as well as results from Bril-
louin experiments in �1−x�PZN−xPT.12

In this letter we present neutron scattering results ob-
tained in �1−x�PZN−xPT with x=0.07. We show that the
low-energy part of the excitation spectrum contains in addi-
tion to the elastic DS observed by Hlinka et al. a QE com-
ponent that was not reported before. We present an analysis
of the evolution of the intensity and of the linewidth of this
component as a function of the temperature and compare the
results with those obtained in �1−x�PMN−xPT �x=0 and
x=0.32�.8,9

We used the cold neutron three-axis spectrometer TASP
�Ref. 14� �SINQ,15 PSI� operated in the constant kf-mode
with kf =1.64 Å−1. A PG filter was installed in the scattered
beam to reduce contaminations by higher-order wavelengths.a�Electronic mail: gelu.rotaru@psi.ch.
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The horizontal collimation was 10� /Å−80�−80�−80�. With
that setting the energy resolution was 0.26 meV. The sample
��1 cm3 in volume� was mounted in a standard furnace with
the �110� cubic axis vertical. Both constant-Q and constant-
energy scans were performed around the �1 1 0� Bragg re-
flection in the temperature range 300 K�T�630 K. Figure
1�a� shows a typical energy scan performed at T=630 K and

Q� = �1,1,0.075�. The spectrum consists of a transverse acous-
tic �TA� phonon and of scattering centered around the elastic
position. The incoherent scattering was measured at high

temperature at Q� = �1,1,0.3� and subtracted from the data.
Figure 1�b� shows the same scan at T=425 K, i.e., close to
the phase transition to the ferroelectric state. At this tempera-
ture the neutron intensity measured around the elastic posi-
tion has strongly increased. The lineshape of the TA phonon
is well described by a damped-harmonic-oscillator function
convoluted with the resolution function of the spectrometer.
We obtain for the TA dispersion �TA=d sin��q�, with
d=6.8�0.1 meV. It turns out from the analysis of the data at
all temperatures that the central component cannot be repro-
duced by a resolution-limited Gaussian function only and
consists of two components, the truly elastic diffuse scatter-
ing observed by Hlinka et al.11 and QE scattering. The QE
scattering is modeled by a Lorentzian function as was done
before in PMN �Refs. 6–8� and �1−x�PMN−xPT.9

�QE� ��,q,T� =
��0,T�

1 + �q/��2

��q

�q
2 + �2 , �1�

where �q=�0+Dq2. We find that D=18�1 meV Å2 in
�1−x�PZN−xPT �x=0.07�. �=1 /� is the inverse of the cor-

relation length � and is obtained from constant energy scans.
Figure 2 shows the temperature dependence of ��T� and
�0�T�, ��0.12�0.01 Å−1 at 630 K, and decreases with de-
creasing temperature as does the linewidth of the QE scatter-
ing: �0=0.48�0.01 meV at T=630 K and 0.21�0.01 meV
below �475 K, where the dynamics of the PNRs freeze. A
similar behavior is observed for the temperature dependence
of the width of the CP in light scattering where
�0�80 GHz ��0.3 meV� in the ferroelectric phase.12 On the
other hand, the intensity of the elastic part of the diffuse
scattering increases strongly below 600 K and reaches a
maximum around Tc, as shown in Fig. 3. The temperature
dependence of the susceptibility of the QE scattering is
shown in Fig. 4. ��0,T� increases strongly on cooling below
630 K, reaches a maximum around Tc, and decreases rapidly
in the ferroelectric phase. The temperature dependence of the
susceptibility of the QE scattering in �1−x�PZN−xPT
�x=0.07� as a similar temperature dependence as the dielec-
tric permittivity like in �1−x�PMN−xPT �x=0, 0.32�.

To conclude, we found that in �1−x�PZN−xPT
�x=0.07� the DS consists of two components associated with
two different timescales, which reconciles the discrepancy
between light scattering12 and previous neutron scattering
measurements.11 We have also shown that the temperature
dependences of the CP and QE components have a similar
behavior in both �1−x�PMN−xPT and �1−x�PZN−xPT

FIG. 1. Typical const-Q scans at T=630 K �a� and at T=425 K �b�. The
solid line is the fit. The bold line emphasizes the contribution of the QE
component.

FIG. 2. The temperature dependences of the damping of the QE scattering
�0 and of the inverse correlation length �.

FIG. 3. The temperature dependences of the elastic component of the dif-
fuse scattering.
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�x=0.07�, which brings further evidence that the static com-
ponent corresponds to atomic displacements that form the
PNR and the QE scattering to the dynamics of the PNR, as
discussed in Refs. 6–10.
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FIG. 4. The temperature dependences of the susceptibility ��0,T� of the QE
scattering and of the dielectric constant 	� taken from Ref. 13.
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