46 research outputs found
Recommended from our members
Primordial germ cell specification: a context-dependent cellular differentiation event [corrected].
During embryonic development, the foundation of the germline is laid by the specification of primordial germ cells (PGCs) from the postimplantation epiblast via bone morphogenetic protein (BMP) and WNT signalling. While the majority of epiblast cells undergo differentiation towards somatic cell lineages, PGCs initiate a unique cellular programme driven by the cooperation of the transcription factors BLIMP1, PRDM14 and AP2γ. These factors synergistically suppress the ongoing somatic differentiation and drive the re-expression of pluripotency and germ cell-specific genes accompanied by global epigenetic changes. However, an unresolved question is how postimplantation epiblast cells acquire the developmental competence for the PGC fate downstream of BMP/WNT signalling. One emerging concept is that transcriptional enhancers might play a central role in the establishment of developmental competence and the execution of cell fate determination. Here, we discuss recent advances on the specification and reprogramming of PGCs thereby highlighting the concept of enhancer function.U.G. is supported by a Marie Curie Intra-European
fellowship. E.M. is supported by the Icelandic Research Fund.
M.A.S. is supported by the Wellcome Trust (WT096738).This is the final version. It was first published by Royal Society Publishing at http://rstb.royalsocietypublishing.org/content/369/1657/2013054
Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes.
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.We thank Folma Buss and David Tumbarello for HeLaM cells stably expressing mRFP-GFP-LC3, Reiner Schulte and Michal Maj for help with FACS analysis, Sally Gray for technical assistance and David Owen for discussing experiments and critical reading of the manuscript. L. W. was supported by European Molecular Biology Organization (EMBO) and Federation of the Societies of Biochemistry and Molecular Biology (FEBS) Long-Term Fellowships, S. C. G. by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant: 098406/Z/12/Z) and U. G. is a Marie Skłodowska-Curie fellow. The work was funded by UK Medical Research Council programme grant to J. P. L. (G0900113) and the Cambridge Institute for Medical Research is supported by a Wellcome Trust Strategic Award (100140). The Zeiss LSM710 confocal system and the Thermo(Cellomics) ArrayScan™ VTi High Content Screening Microscope (Cellomics) were purchased with Wellcome Trust support (grants: 079919 and 093026).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/tra.1228
Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development.
Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells.Wellcome Trust: Jan J Zylicz, Ufuk Günesdogan, Jamie A Hackett, Delphine Cougot, Caroline Lee, MA Surani, WT096738; European Commission (EC): Ufuk Günesdogan; Wellcome Trust: Jan J Zylicz, RG44593This is the final version of the article. It was first available from eLife via http://dx.doi.org/10.7554/eLife.0957
The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac
Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled) thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton
PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos.
Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.U.G. was supported by a Marie Sk1odowska Curie Intra-European
Fellowship. J.J.Z. was a recipient of a Wellcome Trust PhD Studentship
(RG44593). This research was supported by grants from the Wellcome Trust
to M.A.S. (WT096738).This is the final published version. It first appeared at http://www.cell.com/molecular-cell/abstract/S1097-2765%2814%2900787-4
Identification of Prdm genes in human corneal endothelium
Corneal endothelial cells (CECs) are essential for maintaining corneal stromal hydration and ensuring its transparency, which is necessary for normal vision. Dysfunction of CECs leads to stromal decompensation, loss of transparency and corneal blindness. Corneal endothelium has low proliferative potential compared to surface epithelial cells leading to poor regeneration of CEC following injury. Additionally, the tissue exhibits age related decline in endothelial cell density with re-organisation of the cell layer, but no regeneration. The mechanisms which control proliferation and differentiation of neural crest derived CEC progenitors are yet to be clearly elucidated. Prdm (Positive regulatory domain) family of transcriptional regulators and chromatin modifiers are important for driving differentiation of a variety of cellular types. Many Prdm proteins are expressed in specific precursor cell populations and are necessary for their progression to a fully differentiated phenotype. In the present work, we sought to identify members of the Prdm gene family which are specifically expressed in human (h) CECs with a view to begin addressing their potential roles in CEC biology, focussing especially on Prdm 4 and 5 genes. By performing semi-quantitative reverse transcription coupled to PCR amplification we found that in addition to Prdm4 and Prdm5, Prdm2 and Prdm10 genes are expressed in hCECs. We further found that cultured primary hCECs or immortalised HCEC-12 cells express all of the Prdm genes found in CECs, but also express additional Prdm transcripts. This difference is most pronounced between Prdm gene expression patterns of CECs isolated from healthy human corneas and immortalised HCEC-12 cells. We further investigated Prdm 4 and Prdm 5 protein expression in cultured primary hCECs and HCEC-12 cells as well as in a human cadaveric whole cornea. Both Prdm 4 and Prdm 5 are expressed in human corneal endothelium, primary hCECs and in HCECs-
12 cells, characterised by expression of the Naþ/Kþ-ATPase. We observed that both proteins exhibit cytosolic (intracellular, but non-nuclear and distinct from extracellular fluid) as well as nuclear localisation within the endothelial layer, with Prdm 5 being more concentrated in the nuclei of the endothelial cells than Prdm 4. Thus, our work identifies novel Prdm genes specifically expressed in corneal
endothelial cells which may be important in the control of CEC differentiation and proliferation
NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.
Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1648
Durchflusszytometrische Untersuchung der thrombozytenfunktionshemenden Wirkung von Clopidogrel zur Beurteilung der interindividuellen Variabilität und zum Einfluss einer Komedikation mit Statinen
Die Effektivität des Clopidogrels wurde in zahlreichen klinischen Studien bewiesen. Die Resorption und Metabolisierung unterliegen individuellen Schwankungen. Außerdem kann eine Komedikation mit Statinen die Metabolisierung des Clopidogrels in den aktiven Metaboliten beeinflussen. Ziel war es, die interindividuelle Variabilität der Clopidogrelwirkung und den Einfluss einer Komedikation mit Statinen zu untersuchen. Bei 47 Patienten mit elektiver PTCA und Stentimplantation wurde durchflusszytometrisch die CD62P-Expression vor und nach Beginn einer Therapie gemessen. Alle Patienten erhielten am Tag des Eingriffs eine von 300 mg und anschließend 75 mg Clopidogrel täglich. Ferner wurde die Patientengruppe in eine Kontroll- und eine Statingruppe unterteilt. Die Messungen ergaben eine ausgeprägt variable Thrombozytenfunktionshemmung durch Clopidogrel, die Komedikation mit lipophilen Statinen kann die Wirkung beeinflussen