309 research outputs found

    El enfriamiento evaporativo y las pozas de aspersión

    Get PDF
    La transferencia acoplada de calor y masa en una poza de enfriamiento por aspersión es descrita y calculada a través de las ecuaciones básicas de continuidad y energía. Se establecen las relaciones que describen el movimiento y distribución espacial de gotas, la interacción de éstas con el aire circundante y los coeficientes de transferencia de calor y masa. El sistema álgebro diferencial de ecuaciones modela los campos de temperatura y humedad absoluta, mientras que el campo de velocidad del aire es supuesto constante y se estima a partir de valores obtenidos de literatura. Esta simplificación permite desacoplar, en el cálculo numérico, las variables de velocidad y temperatura. El tratamiento acoplado de estas variables es reportado en otro trabajo de los autores [18]. El modelo obtenido se aplica a una poza circular de enfriamiento por aspersión con viento nulo. Los perfiles de velocidad del aire se proponen invariables y su magnitud y sentido se obtienen de otros trabajos de los autores. La solución simultánea de los campos térmicos y másico se obtiene por medio del método numérico de diferencias finitas. Las ecuaciones de transporte se resuelven usando el método matricial de dirección alternada implícita (ADI). La estabilidad numérica del sistema se alcanza utilizando un factor de amortiguamiento en los coeficientes de la matriz de coeficientes de las ecuaciones discretizadas. Se analizan los resultados que entrega el modelo al variar la viscosidad turbulenta del aire, puesto que influye en los valores de temperatura y humedad del aire, con el correspondiente impacto sobre las características de disipación de la poza

    Carbon dioxide rebreathing in non-invasive ventilation. Analysis of masks, expiratory ports and ventilatory modes

    Get PDF
    Background and Aim. Carbon dioxide (CO2) rebreathing is a complication of non-invasive ventilation (NIV). Our objectives were to evaluate the ability of masks with exhaust vents (EV) to avoid rebreathing while using positive pressure (PP) NIV with different levels of expiratory pressure (EPAP). Concerning volume-cycled NIV, we aimed to determine whether cylindrical spacers located in the circuit generate rebreathing. Materials and methods. 5 healthy volunteers were evaluated. Bi-level PP was used with 3 nasal and 2 facial masks with and without EV. Spacers of increasing volume attached to nasal hermetic masks were evaluated with volume NIV. Inspired CO2 fraction was analyzed. Results. Rebreathing was zero with all nasal masks and EPAP levels. Using facial masks 1 volunteer showed rebreathing. There was no rebreathing while using all the spacers. Conclusions. In healthy volunteers, nasal and facial masks with EV prevent rebreathing. In addition, the use of spacers did not generate this undesirable phenomenon

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale

    Opportunities And Challenges of E-Health and Telemedicine Via Satelite

    Get PDF
    The introduction of Information and Communication Technology (ICT) in the health scenario is instrumental for the development of sustainable services of direct benefit for the European citizen. The setting up of satellite based applications will enhance rapidly the decentralisation and the enrichment of the European territory driving it towards a homogenous environment for healthcare

    Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins

    Get PDF
    The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism

    Growth hormone as concomitant treatment in severe fibromyalgia associated with low IGF-1 serum levels. A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence of functional growth hormone (GH) deficiency, expressed by means of low insulin-like growth factor 1 (IGF-1) serum levels, in a subset of fibromyalgia patients. The efficacy of GH versus placebo has been previously suggested in this population. We investigated the efficacy and safety of low dose GH as an adjunct to standard therapy in the treatment of severe, prolonged and well-treated fibromyalgia patients with low IGF-1 levels.</p> <p>Methods</p> <p>Twenty-four patients were enrolled in a randomized, open-label, best available care-controlled study. Patients were randomly assigned to receive either 0.0125 mg/kg/d of GH subcutaneously (titrated depending on IGF-1) added to standard therapy or standard therapy alone during one year. The number of tender points, the Fibromyalgia Impact Questionnaire (FIQ) and the EuroQol 5D (EQ-5D), including a Quality of Life visual analogic scale (EQ-VAS) were assessed at different time-points.</p> <p>Results</p> <p>At the end of the study, the GH group showed a 60% reduction in the mean number of tender points (pairs) compared to the control group (p < 0.05; 3.25 ± 0.8 <it>vs</it>. 8.25 ± 0.9). Similar improvements were observed in FIQ score (p < 0.05) and EQ-VAS scale (p < 0.001). There was a prompt response to GH administration, with most patients showing improvement within the first months in most of the outcomes. The concomitant administration of GH and standard therapy was well tolerated, and no patients discontinued the study due to adverse events.</p> <p>Conclusion</p> <p>The present findings indicate the advantage of adding a daily GH dose to the standard therapy in a subset of severe fibromyalgia patients with low IGF-1 serum levels.</p> <p>Trial Registration</p> <p>NCT00497562 (ClinicalTrials.gov).</p

    Evolution of CRISPR-associated endonucleases as inferred from resurrected proteins

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 is an effector protein that targets invading DNA and plays a major role in the prokaryotic adaptive immune system. Although Streptococcus pyogenes CRISPR–Cas9 has been widely studied and repurposed for applications including genome editing, its origin and evolution are poorly understood. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species that last lived 2.6 billion years before the present. We demonstrate that these ancient forms were much more flexible in their guide RNA and protospacer-adjacent motif requirements compared with modern-day Cas9 enzymes. Furthermore, anCas portrays a gradual palaeoenzymatic adaptation from nickase to double-strand break activity, exhibits high levels of activity with both single-stranded DNA and single-stranded RNA targets and is capable of editing activity in human cells. Prediction and characterization of anCas with a resurrected protein approach uncovers an evolutionary trajectory leading to functionally flexible ancient enzymes.This work has been supported by grant nos. PID2019-109087RB-I00 (to R.P.-J.) and RTI2018-101223-B-I00 and PID2021-127644OB-I00 (to L.M.) from the Spanish Ministry of Science and Innovation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 964764 (to R.P.-J.). The content presented in this document represents the views of the authors, and the European Commission has no liability in respect to the content. We acknowledge financial support from the Spanish Foundation for the Promotion of Research of Amyotrophic Lateral Sclerosis. A.F. acknowledges Spanish Center for Biomedical Network Research on Rare Diseases (CIBERE) intramural funds (no. ER19P5AC756/2021). F.J.M.M. acknowledges research support by Conselleria d’Educació, Investigació, Cultura i Esport from Generalitat Valenciana, research project nos. PROMETEO/2017/129 and PROMETEO/2021/057. M.M. acknowledges funding from CIBERER (grant no. ER19P5AC728/2021). The work has received funding from the Regional Government of Madrid (grant no. B2017/BMD3721 to M.A.M.-P.) and from Instituto de Salud Carlos III, cofounded with the European Regional Development Fund ‘A way to make Europe’ within the National Plans for Scientific and Technical Research and Innovation 2017–2020 and 2021–2024 (nos. PI17/1659, PI20/0429 and IMP/00009; to M.A.M.-P. B.P.K. was supported by an MGH ECOR Howard M. Goodman Award and NIH P01 HL142494

    Small Atom Doping A Synergistic Strategy to Reduce Sn Zn Recombination Center Concentration in Cu2ZnSnSe4

    Get PDF
    Kesterite Cu2ZnSnS x Se4 amp; 8722;x CZTSSe is among the most promising inorganic Earth abundant thin film photovoltaic technologies, although currently, the larger voltage deficit compared with more mature chalcogenide technologies is hampering solar to electricity conversion efficiency progress in these materials. Most of the latest reports agree on the CZTSSe defect structure as the main limitation for the open circuit voltage. Small atom doping is suggested as an interesting strategy to reduce the concentration of defects without affecting secondary phase formation. Herein, an innovative approach based on the introduction of LiAlH4 and its further decomposition during the selenization process of CZTSe precursors, as a pathway for hydrogen and lithium alkali transient doping, is explored. This process shows a strong beneficial influence on the crystal growth and solar cell device performance, especially with a significant improvement in V oc and fill factor. A reduction of nonradiative recombination and a remarkable fourfold increase in the carrier lifetime correlating with the reduction of the open circuit voltage V oc deficit below 330 amp; 8201;mV is demonstrated. A mechanism on how small atoms Li and H interact to reduce the concentration of SnZn recombination centers while keeping doping relatively unchanged is proposed, opening fundamental perspectives for the simple and universal transient doping of thin film chalcogenide compound

    CO2 gasification of chars prepared from wood and forest residue

    Get PDF
    The CO2 gasification of chars prepared from Norway spruce and its forest residue was investigated in a thermogravimetric analyzer (TGA) at slow heating rates. The volatile content of the samples was negligible; hence the gasification reaction step could be studied alone, without the disturbance of the devolatilization reactions. Six TGA experiments were carried out for each sample with three different temperature programs in 60 and 100% CO2. Linear, modulated, and constant-reaction rate (CRR) temperature programs were employed to increase the information content available for the modeling. The temperatures at half of the mass loss were lower in the CRR experiments than in the other experiments by around 120 degrees C. A relatively simple, well-known reaction kinetic equation described the experiments. The dependence on the reacted fraction as well as the dependence on the CO2, concentration were described by power functions (n-order reactions). The evaluations were also carried out by assuming a function of the reacted fraction that can mimic the various random pore/random capillary models. These attempts, however, did not result in an improved fit quality. Nearly identical activation energy values were obtained for the chars made from wood and forest residues (221 and 218 kJ/mol, respectively). Nevertheless, the forest residue char was more reactive; the temperatures at half of the mass loss showed 20-34 degrees C differences between the two chars at 10 degrees C/min heating rates. The assumption of a common activation energy, E, and a common reaction order, v, on the CO2, concentration for the two chars had only a negligible effect on the fit quality
    corecore