43 research outputs found

    Site-dependent charge transfer at the Pt(111)-ZnPc interface and the effect of iodine

    Get PDF
    The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM). Our results suggest that at low coverage ZnPc lies almost parallel to the Pt(111) substrate, in a non-planar configuration induced by Zn-Pt attraction, leading to an inhomogeneous charge distribution within the molecule and charge transfer to the molecule. ZnPc does not form a complete monolayer on the Pt surface, due to a surface-mediated intermolecular repulsion. At higher coverage ZnPc adopts a tilted geometry, due to a reduced molecule-substrate interaction. Our photoemission results illustrate that ZnPc is practically decoupled from Pt, already from the second layer. Pre-deposition of iodine on Pt hinders the Zn-Pt attraction, leading to a non-distorted first layer ZnPc in contact with Pt(111)-I (3×3)\left(\sqrt{3}\times\sqrt{3}\right) or Pt(111)-I (7×7)\left(\sqrt{7}\times\sqrt{7}\right), and a more homogeneous charge distribution and charge transfer at the interface. On increased ZnPc thickness iodine is dissolved in the organic film where it acts as an electron acceptor dopant.Comment: 12 pages, 9 figure

    Breakdown of cation vacancies into anion vacancy-antisite complexes on III-V semiconductor surfaces

    Get PDF
    An asymmetric defect complex originating from the cation vacancy on (110) III-V semiconductor surfaces which has significantly lower formation energy than the ideal cation vacancy is presented. The complex is formed by an anion from the top layer moving into the vacancy, leaving an anion antisite–anion vacancy defect complex. By calculating the migration barrier, it is found that any ideal cation vacancies will spontaneously transform to this defect complex at room temperature. For stoichiometric semiconductors the defect formation energy of the complex is close to that of the often-observed anion vacancy, giving thermodynamic equilibrium defect concentrations on the same order. The calculated scanning tunneling microscopy (STM) plot of the defect complex is also shown to be asymmetric in the [11¯0] direction, in contrast to the symmetric one of the anion vacancy. This might therefore explain the two distinct asymmetric and symmetric vacancy structures observed experimentally by STM

    Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings

    Full text link
    Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by pulsed DC reactive sputter deposition on Si(100) at a temperature of 550 {\deg}C. XRD showed three different crystal structures depending on V-metal fraction in the coating: {\alpha}-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, 63 - 42 at.% V. At lower V-content, 18 and 7 at.%, a gamma-alumina-like solid solution was observed, shifted to larger d-spacing compared to pure {\gamma}-Al2O3. The microstructure changes from large columnar faceted grains for {\alpha}-V2O3 to smaller equiaxed grains when lowering the vanadium content toward pure {\gamma}-Al2O3. Annealing in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 {\deg}C for 42 at.% V and 700 {\deg}C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure {\gamma}-Al2O3-coating, which transformed to {\alpha}-Al2O3 after annealing to 1100{\deg} C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The latter decreased with increasing V-content, larger than 7 at.% V metal fraction. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings

    The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years

    Get PDF
    In this study, we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z ∼ 0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z ∼ 0.1) counterparts drawn from the MCXC meta-catalogue, supplemented by Sloan Digital Sky Survey imaging and spectroscopy. We observed striking differences in the morphological, colour, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broad-band colours, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51 ± 0.71 from z ∼ 0.9 to z ∼ 0.1. Through this and other comparisons, we conclude that a combination of major merging (mainly wet or mixed) and in situ star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3, while their average Sérsic index increased by ∼0.45 from z ∼ 0.9 to z ∼ 0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼7 Gyr

    STM and XPS characterization of zinc phthalocyanine on InSb(001)

    No full text
    Zinc phthalocyanine (ZnPc) adsorbed on the InSb(0 0 1)-c(8 x 2) surface has been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Coverages from sub-monolayer to monolayer (ML) have been investigated. The molecules form ordered structures on the reconstructed rows of the surface with the molecular plane parallel to the surface. A change in the electronic structure between the sub-ML and higher coverages has been observed. Moreover, in order to study the influence of annealing on the electronic and geometric structures, the samples have been heated to elevated temperatures (about 640 K). In addition, multi-layer ZnPc films have been characterized by XPS measurements
    corecore