81 research outputs found
Wear and Friction Behavior of Pressure Infiltration Cast Copper-Carbon Composites
Metal matrix composites, prepared by pressure infiltration casting of copper base alloy into 2 types of microporous carbon preforms, one with 100% amorphous carbon and the other containing 40 wt pct. graphite and 60 wt pct. amorphous carbon, have been examined for their wear and friction behavior under ambient conditions using a pin-on-plate reciprocating wear tester. Micro-structural characterization of tribo-surfaces has been carried out. The thin carbon films formed on the tribo-surface reduced the friction coefficient and wear for the composites, especially at low loads on the pin. Adhesive wear observed on the tribo-surface promoted wear and friction at high loads. The wear and friction were observed to be very sensitive to the size and distribution of the microstructural constituents
Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order
The influence of relativistic contributions to elastic electron deuteron
scattering is studied systematically at low and intermediate momentum transfers
( fm). In a -expansion, all leading order
relativistic -exchange contributions consistent with the Bonn OBEPQ models
are included. In addition, static heavy meson exchange currents including boost
terms and lowest order -currents are considered. Sizeable
effects from the various relativistic two-body contributions, mainly from
-exchange, have been found in form factors, structure functions and the
tensor polarization . Furthermore, static properties, viz. magnetic
dipole and charge quadrupole moments and the mean square charge radius are
evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for
publication in Phys.Rev.C Details of changes: (i) The notation of the curves
in Figs. 1 and 2 have been clarified with respect to left and right panels.
(ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a
corresponding reference [48] (iii) At the end of the text we have added a
paragraph concerning the quality of the Bonn OBEPQ potential
Four years of Ulysses dust data: 1996 to 1999
The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse (, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between
January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and
crossed the ecliptic plane at aphelion in May 1998. In this four-year period
218 dust impacts were recorded with the dust detector on board. We publish and
analyse the complete data set of both raw and reduced data for particles with
masses to g. Together with 1477 dust impacts
recorded between launch of Ulysses and the end of 1995 published earlier
\cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with
the Ulysses sensor between October 1990 and December 1999 is now available. The
impact rate measured between 1996 and 1999 was relatively constant with about
0.2 impacts per day. The impact direction of the majority of the impacts is
compatible with particles of interstellar origin, the rest are most likely
interplanetary particles. The observed impact rate is compared with a model for
the flux of interstellar dust particles. The flux of particles several
micrometers in size is compared with the measurements of the dust instruments
on board Pioneer 10 and Pioneer 11 beyond 3 AU (Humes 1980, JGR, 85,
5841--5852, 1980). Between 3 and 5 AU, Pioneer results predict that Ulysses
should have seen five times more ( sized) particles than
actually detected.Comment: accepted by Planetary and Space Science, 22 pages, 8 figures (1
colour figure
Wear and Friction Behavior of Pressure Infiltration Cast Copper-Carbon Composites
Metal matrix composites, prepared by pressure infiltration casting of copper base alloy into 2 types of microporous carbon preforms, one with 100% amorphous carbon and the other containing 40 wt pct. graphite and 60 wt pct. amorphous carbon, have been examined for their wear and friction behavior under ambient conditions using a pin-on-plate reciprocating wear tester. Micro-structural characterization of tribo-surfaces has been carried out. The thin carbon films formed on the tribo-surface reduced the friction coefficient and wear for the composites, especially at low loads on the pin. Adhesive wear observed on the tribo-surface promoted wear and friction at high loads. The wear and friction were observed to be very sensitive to the size and distribution of the microstructural constituents
- …