3,091 research outputs found

    Skyrmion ratchet propagation: utilizing the skyrmion Hall effect in AC racetrack storage devices

    Get PDF
    Magnetic skyrmions are whirl-like nano-objects with topological protection. When driven by direct currents, skyrmions move but experience a transverse deflection. This so-called skyrmion Hall effect is often regarded a drawback for memory applications. Herein, we show that this unique effect can also be favorable for spintronic applications: We show that in a racetrack with a broken inversion symmetry, the skyrmion Hall effect allows to translate an alternating current into a directed motion along the track, like in a ratchet. We analyze several modes of the ratchet mechanism and show that it is unique for topological magnetic whirls. We elaborate on the fundamental differences compared to the motion of topologically trivial magnetic objects, as well as classical particles driven by periodic forces. Depending on the exact racetrack geometry, the ratchet mechanism can be soft or strict. In the latter case, the skyrmion propagates close to the efficiency maximum

    Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles

    Get PDF
    Magnetic skyrmions have attracted enormous research interest since their discovery a decade ago. The non-trivial real-space topology of these nano-whirls leads to fundamentally interesting and technologically relevant consequences — the skyrmion Hall effect of the texture and the topological Hall effect of the electrons. Furthermore, it grants skyrmions in a ferromagnetic surrounding great stability even at small sizes, making skyrmions aspirants to become the carriers of information in the future. Still, the utilization of skyrmions in spintronic devices has not been achieved yet, among other reasons, due to shortcomings in their current-driven motion. In this review, we present recent trends in the field of topological spin textures that go beyond skyrmions. The majority of these objects can be considered a combination of multiple subparticles, such as the bimeron, or the skyrmion analogues in different magnetic surroundings, such as antiferromagnetic skyrmions, as well as three-dimensional generalizations, such as hopfions. We classify the alternative magnetic quasiparticles – some of them observed experimentally, others theoretical predictions – and present the most relevant and auspicious advantages of this emerging field

    Microscopic origin of the anomalous Hall effect in noncollinear kagome magnets

    Get PDF
    The anomalous Hall effect is commonly considered a signature of ferromagnetism. However, recently, an enormous anomalous Hall conductivity was measured in the compensated kagome magnets Mn3Sn and Mn3Ge. The occurrence of this effect is allowed by the magnetic point group of these materials; however, its emergence is still lacking a microscopic explanation. Herein we show that the spin-orbit coupling and an out-of-plane tilting of the texture are equivalent for several kagome magnets. Consequently, a coplanar system with spin-orbit coupling behaves as if it were virtually noncoplanar. We show via tight-binding model calculations that the Hall effect can mainly be interpreted as a topological Hall effect generated by the opening angle of the virtually tilted texture. Furthermore, upon tilting the fixed texture out of the kagome plane, we find a critical tilting angle for which the Hall conductivity vanishes for all energies. In this case, the Hamiltonian is invariant under a combined time-reversal and mirror symmetry, because the virtual texture is coplanar

    Identification of a Candidate CD5 Homologue in the Amphibian Xenopus laevis

    Get PDF
    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cell

    Spin and orbital Edelstein effects in a two-dimensional electron gas: Theory and application to SrTiO<sub>3</sub> interfaces

    Get PDF
    The Edelstein effect produces a homogeneous magnetization in nonmagnetic materials with broken inversion symmetry which is generated and tuned exclusively electrically. Often the spin Edelstein effect-that is, a spin density in response to an applied electric field-is considered. In this paper we report on the electrically induced magnetization that comprises contributions from the spin and the orbital moments. Our theory for these spin and orbital Edelstein effects is applied to the topologically nontrivial two-dimensional electron gas at SrTiO3 interfaces. In this particular system the orbital Edelstein effect exceeds the spin Edelstein effect by more than one order of magnitude. This finding is explained mainly by orbital moments of different magnitude in the Rashba-like split band pairs, while the spin moments are of almost equal magnitude

    Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice

    Get PDF
    Background Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. Methodology/Principal Findings To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL- 23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81–176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. Conclusion/Significance We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen-host interaction

    A systematic study of zooplankton-based indices of marine ecological change and water quality: Application to the European marine strategy framework Directive (MSFD)

    Get PDF
    Marine zooplankton are central components of holistic ecosystem assessments due to their intermediary role in the food chain, linking the base of the food chain with higher trophic levels. As a result, these organisms incorporate the inherent properties and changes occurring atall levels of the marine ecosystem, temporally integrating signatures of physical and chemical conditions. For this reason, zooplankton-based biometrics are widely accepted as useful tools for assessing and monitoring the ecological health and integrity of aquatic systems. The European Marine Strategy Framework Directive (EU-MSFD) requires the use of different types of bio-monitors, including zooplankton, to monitor progress towards achieving specific environmental and water quality targets in EU. However, there is currently no comprehensive synthesis of zooplankton indices development, use, and associated challenges. We addressed this issue with a two-step approach. First, we formulated the indicator-metrics-indices cycle (IMIC) to redefine the closely related but often ambiguously utilized terms - indicator, metric and index, highlighting the convergence between them and the iterative nature of their interaction. Secondly, we formulated frameworks for synthesizing, presenting and systematically applying zooplankton indices based on the IMIC framework. The main benefits of the IMIC are twofold: 1). to disambiguate the key elements: indicators, metrics, and indices, revealing their links to an operational ecological indicator system, and 2) to serve as an organizing tool for the coherent classification of indices according to the MSFD descriptors. Using the IMIC framework, we identified and described two broad categories of indices namely the core biodiversity indices already in use in the Baltic Sea and North Atlantic regions, including the ‘Zooplankton Mean Size and Total Stock (zooplankton MSTS)’ and 'Plankton Lifeforms index (PLI)', and stressor-response indices retrieved from the existing literature, elucidating their applicability to different MSFD descriptors. Finally, major challenges of developing new indices and applying existing ones in the context of the MSFD were critically addressed and some solutions were proposed

    The Turkey Ig-like receptor family: identification, expression and function.

    Get PDF
    The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes
    • …
    corecore