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Microscopic origin of the anomalous Hall effect in noncollinear kagome magnets
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The anomalous Hall effect is commonly considered a signature of ferromagnetism. However, recently, an
enormous anomalous Hall conductivity was measured in the compensated kagome magnets Mn3Sn and Mn3Ge.
The occurrence of this effect is allowed by the magnetic point group of these materials; however, its emergence is
still lacking a microscopic explanation. Herein we show that the spin-orbit coupling and an out-of-plane tilting of
the texture are equivalent for several kagome magnets. Consequently, a coplanar system with spin-orbit coupling
behaves as if it were virtually noncoplanar. We show via tight-binding model calculations that the Hall effect
can mainly be interpreted as a topological Hall effect generated by the opening angle of the virtually tilted
texture. Furthermore, upon tilting the fixed texture out of the kagome plane, we find a critical tilting angle for
which the Hall conductivity vanishes for all energies. In this case, the Hamiltonian is invariant under a combined
time-reversal and mirror symmetry, because the virtual texture is coplanar.
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I. INTRODUCTION

The Hall effect of electrons is one of the most intensely
investigated effects in solid-state physics. It describes the
transverse deflection of moving conduction electrons in a Hall
bar when time-reversal symmetry is broken. Besides the con-
ventional Hall effect which is caused by an externally applied
magnetic field [1], the anomalous Hall effect [2] has become
a signature of ferromagnets [3]. This effect can be caused by
the skew-scattering [4,5] and side-jump [6] mechanisms. Both
contributions are extrinsic; they are related to the spin-orbit
coupling at defects [3]. Besides, even in a perfect sample, an
anomalous Hall effect can arise intrinsically [7] due to the
occurrence of a reciprocal-space Berry curvature [8,9]. Typi-
cally, all three contributions are related to a net magnetization;
it breaks a set of time-reversal and spatial symmetries so that
a reciprocal-space Berry curvature can arise. Furthermore, a
Berry curvature can also be caused by noncollinear magnetic
textures with a net scalar spin chirality [10], i.e., certain
noncoplanar textures like magnetic skyrmions [11,12]. The
canted magnetic moments effectively generate an emergent
magnetic field (or real-space Berry curvature) that causes the
so-called topological Hall effect [13].

Over the last years, a straightforward microscopic un-
derstanding has been established for all three of the above
presented contributions to the Hall effect. However, recently it
was found that also materials without a net magnetization can
exhibit an anomalous Hall effect [14–18], whose microscopic
origin must be different from the anomalous Hall effect men-
tioned above. In several layered kagome materials a coplanar
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spin texture is observed with a vanishing net magnetization,
and still tight-binding models and first-principle calculations
predict finite anomalous Hall conductivities in agreement
with magnetic point group analyses [18,19]. Recent exper-
iments in Mn3Sn [16] and Mn3Ge [17], both members of
the space group P63/mmc (No. 194) [16,18], have reported
large anomalous Hall conductivities of up to 500 �−1 cm−1

confirming these predictions [20]. However, a straightforward
microscopic understanding is still missing.

Herein we establish a microscopic explanation for the
occurrence of a finite anomalous Hall effect in several kagome
magnets. We show that the spin-orbit coupling for these
systems is equivalent to a tilting of the magnetic moments out
of the kagome plane. The Hall effect can then be explained
by conventional means upon considering the net moment
and the net scalar spin chirality of the virtually tilted texture
instead of the actual texture. Using tight-binding calculations,
we show that the topological Hall contribution (caused by
the net scalar spin chirality) is dominant over the anomalous
Hall contribution (caused by the net magnetic moment of
the virtual texture). Furthermore, we show that the virtual
tilting due to the spin-orbit coupling can be compensated
by tilting the actual texture along the opposite out-of-plane
direction. For a critical angle the virtual texture is coplanar,
restoring the combined time-reversal and mirror symmetry of
the Hamiltonian that forbids finite Hall conductivities.

II. MODEL AND METHODS

Throughout our study, we consider the tight-binding
Hamiltonian as used in Ref. [14] in which the anomalous Hall
effect in these kagome magnets has first been predicted,

H = t
∑
〈i, j〉

c†
i c j + m

∑
i

c†
i (mi · σ)ci

+ iλ
∑
〈i, j〉

c†
i (ni j · σ)c j . (1)
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FIG. 1. Coplanar magnetic textures on a kagome lattice. (a) The
three basis atoms have four nearest neighbors each. For each of these
bonds the spin-orbit vector ni j = −n ji is indicated (red; the black
arrow indicates the direction i j versus ji). (b) The three basis atoms
and magnetic moments mi (indicated by arrows) in the coplanar ra-
dial configuration. The unit cell has three symmetry planes indicating
a combined time-reversal and mirror symmetry (red). The texture
is characterized by a positive vector spin chirality κ = +1 and an
in-plane offset �� = 0◦, as indicated. (c) The toroidal phase. All
moments are locally rotated by 90◦ compared to (b) giving �� =
90◦. This magnetic texture has three mirror symmetry planes. (d), (e)
Textures with a negative vector chirality are shown. They only have
one symmetry plane each.

The first term represents the hopping of an electron from lat-
tice site j to i with the amplitude t . The second term describes
the Hund’s coupling of electron spin and magnetic texture
{mi}. The strength of this interaction is m = 1.7t throughout
this paper. The third term represents the spin-orbit coupling,
as introduced in Ref. [14], similar to the spin-orbit coupling
in graphene [21]. The term preserves the inversion symmetry,
but accounts for the difference between left- and right-hand
environments for electrons hopping along different paths in a
kagome layer [14]. The vectors ni j = −n ji are visualized in
Fig. 1(a) (red arrows).

This minimal model comprises a subset of the full Hamil-
tonian. Only a few relevant bands near the Fermi energy are
considered and the magnetic texture {mi} is assumed to be
constituted by energetically lower states and is fixed. Still,
the model allows us to establish an understanding for the
emerging Hall effect since it has the same symmetry as the
complete system.

Diagonalizing this Hamiltonian gives the band structure as
eigenvalues En(k) and the eigenvectors |nk〉 ≡ |un(k)〉 from
which the intrinsic contribution to the Hall conductivity can
be calculated [3],

σxy(EF ) = −e2

h

1

2π

∑
n

∫
E (k)�EF

�(z)
n (k)d2k. (2)

We treat the Fermi energy EF as a parameter that can be tuned
by doping or application of a gate voltage. �(z)

n (k) is the z

component of the reciprocal-space Berry curvature of band n,

�(z)
n (k) = −2 Im

∑
m �=n

〈nk|∂kx Hk|mk〉 〈mk|∂ky Hk|nk〉
[En(k) − Em(k)]2

.

Next, we introduce the different configurations of the
considered magnetic texture. The unit cell of a kagome layer
consists of three atoms. The three magnetic moments have
an angle of 120◦ with respect to each other. The polar angle
of their orientation �i and the polar angle of their position
vector φi (center of the coordinate system in the center of the
plaquette) are related by

�i = κφi + �� (3)

for all basis atoms i = 1, 2, 3. Here κ = ±1 is the vector spin
chirality. We discuss the following experimentally observed
kagome magnets: For a positive vector spin chirality κ = +1
there exist two different configurations of Mn3ZN (Z = Ni,
Ga, Zn, Sn, Ag, Rh, Pt) [22,23] or Mn3X (X = Rh, Ir, Pt) [24]
[radial order �� = 0◦, 180◦ and toroidal order �� = ±90◦
shown in Figs. 1(b) and 1(c)], and for a negative vector spin
chirality κ = −1 there exist two different configuration of
Mn3Y (Y = Sn, Ge, Ga) [25] [�� = 0◦, 180◦ and �� =
±90◦ shown in Figs. 1(d) and 1(e)]. Additionally, the tight-
binding model allows us to arbitrarily vary the in-plane offset
angle ��, similarly to the study in Ref. [26], as well as the
azimuthal angle θ [cf. Fig. 3(a); θ = 90◦ for coplanar textures]
like in Ref. [14] in order to analyze the canted magnetic
textures later in this paper.

Before we present our results, we want to stress that
we consider three fundamentally different types of textures
throughout our paper: the fixed magnetic texture, the electron
spin texture, and a virtual texture. The fixed magnetic texture
{mi} is a real-space texture that is formed by localized mag-
netic moments. This texture is predefined and directly enters
the Hamiltonian (1). It is defined by the in-plane orientation
given in Eq. (3) and the azimuthal angle θ . Besides, the
itinerant spin magnetic moments of the conduction electrons
form a texture in reciprocal space. We obtain this so called
spin texture by calculating the spin expectation value

〈sn(k)〉 = 〈nk|�|nk〉 , (4)

where � = diag(σ, . . . , σ ) is given by the vector of Pauli
matrices σ. For a deeper understanding we can also analyze
the spin texture that originates from a single atom. In this
case we use � = diag(0, . . . , σ, . . . , 0). As we will present
later in this paper, the transport properties are only loosely
related to the fixed magnetic texture or the spin texture of
electrons. Instead, the spin-orbit coupling gives rise to a
virtual texture {m̃i} which is effectively tilted with respect to
the fixed texture out of the kagome plane. This virtual texture
is not measurable but is determined by the symmetry of the
system. Therefore, it determines the emerging Hall effects and
can be utilized to explain whether and how certain symmetries
are broken.

III. RESULTS AND DISCUSSION

In the following we present calculations of the band
structure and the anomalous Hall conductivity within the
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FIG. 2. Band structure and anomalous Hall conductivity for the coplanar configurations, θ = 90◦. (a) The band structure of the radial
configuration, �� = 0, when spin-orbit interaction is not taken into account. The out-of-plane spin expectation value 〈sz〉 of all bands and k
points vanishes (gray). (b) Similar to (a) but the spin-orbit interaction is now taken into account. Degeneracies are lifted and the spin expectation
value now has a finite out-of-plane component (red, positive; blue, negative). (c) The anomalous Hall conductivity corresponding to the band
structure in (b). (d) shows the anomalous Hall conductivity for various Fermi energies [colored lines indicated in (c)] upon locally rotating
each moment around the local z axis. Cartoons of the texture for several angles �� are shown below. (e) The spin expectation value for the
energetically lowest band in (b). The color encodes the out-of-plane component. Below, the atom-resolved spin expectation value is shown.

framework of the presented tight-binding model. We focus
here on the κ = +1 phase as for example Mn3Pt. Later we
will briefly refer to the κ = −1 phase as well, which shows
similar results and for which the same arguments hold that we
will establish in the following.

For the κ = +1 phase, we begin by discussing different
coplanar configurations and with a review of the existing
literature. To reveal the mechanism for the emergence of
this effect—the main subject of our paper—we analyze the
expectation value of the conduction electrons’ spin, establish
the equivalence of the spin-orbit coupling and an out-of-plane
tilting of the moments, and even consider fixed magnetic
textures that have been tilted out of the kagome plane.

A. Band structure and anomalous Hall conductivity of the
coplanar radial configuration

Before we consider magnetic systems, we start with a brief
analysis of the structural kagome lattice. The three atoms in
the unit cell of a nonmagnetic kagome layer without spin-
orbit coupling give rise to three spin-degenerate bands (band
structure shown in Fig. 1 of the Supplemental Material [27]).
One of these bands is ideally flat and the other two bands
exhibit a band structure similar to graphene: They touch lin-
early at the Brillouin zone’s K points exhibiting Dirac cones.
Since a magnetic texture is not considered yet, time-reversal
symmetry is conserved and an anomalous Hall conductivity is
absent.

Next, we will review the results for coplanar configura-
tions, similar to Refs. [14,18,26,28]. When we consider the
magnetic texture like in the radial phase of Mn3Pt, as shown
in Fig. 1(b), the spin degeneracy of the bands is lifted due to
the broken time-reversal symmetry and six individual bands
are visible [Fig. 2(a)]. Reminiscent of the Dirac cones of the
original band structure, bands touch linearly at the K points.
Also, degeneracies are present at �. Here, in contrast to the
Dirac points, the band structure is quadratic for all bands.

The mirror symmetry M is broken in the system which is
essential for the emergence of a Hall conductivity. However,
since spin-orbit coupling is still not taken into account, the
system has a combined time-reversal and mirror symmetry

TM forbidding the occurrence of an anomalous Hall conduc-
tivity, since �(z)

n (−k) = −�(z)
n (k) [14] [cf. red lines repre-

senting TM symmetry planes in Fig. 1(b)]. The conduction
electrons’ spins partially align with the spatially dependent
fixed magnetic texture at each lattice site (see Fig. 2(a) of
the Supplemental Material [27]). Both spin texture and fixed
magnetic texture are oriented in the kagome plane.

When spin-orbit interaction is considered, TM symmetry
is broken (we establish how this symmetry is broken micro-
scopically later in this paper) and the degeneracies in the band
structure are lifted [red in Fig. 2(b)]. Away from the high-
symmetry points, the band structure stays mostly unchanged.
The breaking of TM symmetry leads to the emergence of an
anomalous Hall conductivity [red in Fig. 2(c)] that exhibits a
pronounced energy dependence. In the global band gaps the
conductivity is quantized in units of e2/h; i.e., a quantum
anomalous Hall effect occurs [29]. The system becomes a
Chern insulator.

B. In-plane rotation of the magnetic texture

A noncollinear coplanar magnetic texture does not always
lead to the emergence of an anomalous Hall effect. When the
magnetic moments {mi} are collectively rotated around the lo-
cal z axis by �� = 90◦, the alternative phase of materials like
Mn3Pt is established. This system has three mirror symmetry
planes [red in Fig. 1(c)] which protect the Dirac points and
render the anomalous Hall effect zero, even upon considering
spin-orbit coupling.

In Ref. [26] Zhou et al. have investigated the anomalous
Hall conductivity for phases between these two states. We
find similar results and conclude the following: For Fermi
energies that are close to the band edges [red and blue curves
in Fig. 2(d)], the signal is proportional to cos(��), where ��

is the in-plane rotation angle (�� = 0◦, 180◦ corresponds to
the radial phase and �� = ±90◦ corresponds to the toroidal
phase). This observation is reasonable, since the projection
of each moment on the potential mirror plane breaks the
mirror symmetry; it is given by cos(��) as well. Loosely
speaking, the broken mirror symmetry does not only allow for
the anomalous Hall effect to arise, but the “degree by which
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FIG. 3. Anomalous Hall conductivity under out-of-plane tilting of the fixed magnetic texture. In (a)–(e) spin-orbit coupling (SOC) has
not been considered, whereas in (f)–(j) it is taken into account. (a) A noncollinear and noncoplanar configuration. Black arrows indicate the
magnetic moments mi. (b) Hall conductivity versus azimuthal angle θ . All four curves (different colors correspond to different Fermi energies)
are antisymmetric with respect to θ = 90◦ which is the coplanar configuration as indicated by the cartoons below. (c)–(e) Band structures
with out-of-plane components of the spin expectation value (red, positive; blue, negative) for different azimuthal angles θ as indicated. (f) The
texture from (a) in black. Additionally, the virtual magnetic texture {m̃i} is shown in red. This texture arises due to the spin-orbit coupling, as
explained in the main text, and it is characterized by a reduced azimuthal angle θ − �θc. (g) Same as (b), but spin-orbit interaction is taken
into account. Here the curves are antisymmetric with respect to θc = 90◦ + �θc ≈ 103◦. (h)–(j) Same as (c)–(e), but spin-orbit interaction was
considered as in panel (g).

the symmetry is broken” even determines the magnitude of the
effect. Furthermore, this projection also determines the size
of the band gaps due to spin-orbit coupling. For the toroidal
phase (�� = ±90◦), the band structure is unaffected by the
spin-orbit coupling (band structures are shown in Fig. 3 of the
Supplemental Material [27]).

The cos(��) behavior does not hold for Fermi energies
close to the band edge, let alone in the band gap: the black
curve in Fig. 2(d) is not perfectly cosinusoidal and the green
curve at EF = 1.8t is a step function, since the corresponding
Fermi energy is located in a band gap (an opened Dirac point
for �� �= ±90◦) and the Hall conductivity must be quantized.

Summarizing up to this point, we have presented how
the anomalous Hall conductivity for noncollinear coplanar
magnetic textures can be related to the breaking of M and TM
symmetries, which is where the limit of the existing literature
is reached. In the following, we will unravel the underlying
microscopic mechanism.

C. Out-of-plane spin tilting of the conduction electrons

First, we consider a quantity that allows us to explain the
emergence of the anomalous Hall effect in coplanar systems

microscopically: a tilted spin texture formed by the conduc-
tion electrons.

As mentioned, without spin-orbit interaction, the conduc-
tion electrons’ spins remain in the plane, partially aligned
with the fixed magnetic texture [cf. completely gray bands
in Fig. 2(a)]. When the spin-orbit interaction is taken into
account in the toroidal phase, this is unchanged and the
Hall conductivity stays zero (cf. Fig. 3 of the Supplemental
Material [27]). However, in the radial phase, the spins start
to cant out of the plane [red and blue in Fig. 2(b)]. This
canting is k and band dependent, and general trends can be
observed: For the first (energetically lowest) and fourth band,
the tilting is along the −z direction, while for the third and
sixth (energetically highest) band it is along the +z direction.
This relates quite well to the anomalous Hall signal shown in
Fig. 2(c): Within the first and fourth band, the conductivity is
negative (or close to zero if positive) and within the third and
sixth band it is positive. For energies within the second or fifth
band, where the out-of-plane spin component is positive and
negative, the anomalous conductivity changes sign.

Even though we have not yet explained what causes the
tilting, one can register that the spin moment of the conduction
electrons is nonzero in this model, even though the fixed
magnetic texture is coplanar. For this reason, one may argue
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that it is clear that a finite Hall conductivity is calculated by
conventional means: the total texture has a net magnetization
and even a net scalar spin chirality χs = si · (s j × sk ) which
give rise to an anomalous and topological Hall effect, respec-
tively.

While this explanation seems reasonable a first glance,
in the following, we vary the azimuthal angle of the fixed
magnetic texture and find that there exist cases for which this
explanation does not hold: Even for a combined texture with a
net moment and a net scalar spin chirality the Hall effect can
be absent and for a completely compensated system the Hall
effect can be finite. Therefore, next we analyze the system on
the Hamiltonian level to unravel the microscopic mechanism
and to show how the TM symmetry is broken precisely and
how it can even be restored for certain noncoplanar magnetic
textures.

D. Out-of-plane rotation of the magnetic texture

In the following, we tilt the fixed texture out of the kagome
plane (azimuthal angle θ ) which, in the end, allows us to es-
tablish the actual microscopic explanation for the emergence
of the anomalous Hall effect in kagome magnets: the existence
of a virtual texture {m̃i} that is tilted with respect to the actual
magnetic texture {mi} due to the spin-orbit coupling.

First we present and discuss the results upon changing θ

without taking spin-orbit interaction into account [Fig. 3(b)].
This reference system exhibits a pure topological Hall effect
since the anomalous Hall effect is absent by definition. For
θ = 0◦ and 180◦, the localized moments are parallel and
point out of the kagome plane. For θ = 90◦ the moments
are coplanar as described above. In both cases the scalar
spin chirality vanishes and a topological Hall effect does not
emerge. For all other angles the scalar spin chirality

χs = mi · (m j × mk ) = 3
√

3

2
cos θ sin2 θ (5)

(i, j, and k are the lattice sites of a kagome plaquette) is finite
and so is the calculated Hall conductivity (except for single
angles where contributions from different bands compensate).
For all energies, the angular-dependent curves are antisym-
metric with respect to θ = 90◦, due to the antisymmetry of
the scalar spin chirality. While continuously changing the
azimuthal angle θ , the band structure changes considerably.
For this reason, a fixed energy may even shift through band
gaps into other bands as is seen in the blue curve for EF =
1.8t . When the Fermi energy is located in the gap, the Hall
conductivity is quantized. We repeated these calculations also
for fixed occupation numbers (see Fig. 4 of the Supplemental
Material [27]). The curves remained antisymmetric.

When we consider the spin-orbit interaction [cf. Fig. 3(g)],
the curves change and the configurations θ = 0◦, 90◦, and
180◦ now yield a finite signal in agreement with the above
presented findings that the radial type of the coplanar con-
figuration (θ = 90◦) exhibits an anomalous Hall effect and
compatible with the typical observation that a collinear fer-
romagnet (θ = 0◦, 180◦) exhibits an anomalous Hall effect
when spin-orbit interaction is present. Generally, the shape of
this angular-dependent curve looks similar to the case without
spin-orbit coupling. However, besides minor changes near the

ferromagnetic configurations, it is mainly shifted. The curve
is still antisymmetric, not with respect to θ = 90◦, but shifted
by about �θc = 13◦ to an azimuthal angle θc = 103◦. This
critical angle is parameter dependent, and we will precisely
derive it later in this paper.

The systems for the two angles θ = 13◦ and θ = 103◦ are
special in several regards: the Hall conductivity vanishes, the
Dirac points are reestablished, and the reciprocal-space spin
texture is homogeneous, (anti)parallel to the fixed texture [ho-
mogeneous light colors in Fig. 3(h) and homogeneous bright
colors in Fig. 3(i)]. For all other configurations, even for the
coplanar texture (θ = 90◦) or the ferromagnetic configuration
(θ = 0◦, 180◦) [Fig. 3(j)], none of these three features are
fulfilled.

E. Microscopic mechanism: Tilted virtual texture hidden in the
Hamiltonian

These findings point toward a higher symmetry for the
two special configurations characterized by θ = �θc and θ =
θc = �θc + 90◦, even though the texture itself does not have
a higher symmetry than the other textures (they have an even
lower symmetry compared to the coplanar or ferromagnetic
configuration).

As we show, this stems from the fact that the electronic
properties of the system are not determined by the fixed
texture, the conduction electrons’ spin texture, or a combined
texture, but by a virtual texture characterized by the Hamil-
tonian. This virtual texture {m̃i} arises, since the spin-orbit
coupling in this system is equivalent to a canting of the fixed
magnetic texture {mi} out of the kagome plane [cf. red and
black arrows in Figs. 3(a) and 3(f)], as we summarize in the
following. The transformation is shown in the Appendix in
detail.

The full Hamiltonian (1) used throughout this paper can be
transformed to

H =
∑
〈i, j〉

t eff
i j d†

i d j + m
∑

i

d†
i (m̃i · σ )di

+ iλ̃
∑
〈i, j〉

d†
i (ni j · σ )d j, (6)

by applying a unitary transformation Ui (new electron opera-
tors are di), that rotates the coordinate system at each lattice
site. The new z axis of the coordinate system at lattice site i
has an angle α with respect to the initial z axis and has been
tilted along the direction of the magnetic moment mi. A sketch
of this rotation is shown in Fig. 6 as part of the Appendix.

This transformation, of course, leaves the physical prop-
erties unchanged but the spin and the magnetic moments are
measured differently. In this lattice-site dependent coordinate
system, the azimuthal angle of the fixed magnetic texture is
effectively decreased by α,

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i ) sin(θ − α)
cos(θ − α)

⎞
⎠. (7)

When the transformation is applied to the hopping term and
the spin-orbit coupling, the (now spin-dependent) hopping
amplitude is modified as given in the Appendix but most
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FIG. 4. Different contributions to the Hall effect for different magnetic textures. (a) The Hall conductivity for a collinear magnetic texture
is shown under variation of the azimuthal angle θ . Only a conventional anomalous Hall effect proportional to mz of the fixed magnetic texture
is present when spin-orbit interaction is considered. (b) The toroidal texture is considered. Upon variation of θ the scalar spin chirality χs is
finite and an additional topological Hall effect arises that is much larger than the anomalous Hall effect. (c) The radial texture is considered, as
discussed above. The curve from the toroidal texture is mainly shifted by �θc = 13◦ which characterizes the nature of the “new” anomalous
Hall effect in this material class. All calculations were performed at a constant occupation number of nocc = 3.4.

importantly both terms now contribute with off-diagonal
elements that can be identified as an effective spin-orbit
coupling. For the radial phase it is quantified by

λ̃ = −
√

3

2
sin(α)t + cos(α)λ. (8)

This transformation shows that the spin-orbit interaction
and a texture that is tilted out of the kagome plane have
the same effect in this system. Especially, a critical angle αc

exists, for which the effective spin-orbit coupling is compen-
sated, λ̃ = 0. This angle determines the effective tilting angle
−�θc of the virtual texture {m̃i} compared to the fixed texture
{mi} [cf. Fig. 3(f)] that arises due to spin-orbit coupling. For
the phase with positive vector spin chirality, κ = +1, the
critical compensation angle of the magnetic texture for which
the virtually tilted texture is coplanar is

�θc = αc = arctan

[
λ

t
√

3/2
cos(��)

]
; (9)

see the Appendix. The λ and �� dependencies have been
confirmed numerically in Fig. 5 of the Supplemental Material
[27]. The numerically determined data points have been de-
termined by looking at the avoided crossings that form Dirac
points at the critical angle. Furthermore, the Hall conductivity
vanishes for all energies at these angles.

In summary, we have shown that the spin-orbit coupling
term can be totally compensated by tilting the texture by
�θc along the azimuthal direction (and also modifying the
hopping). This means that the consequences of the spin-orbit
coupling and a tilted texture are equivalent in this system: A
fixed texture {mi} that is coplanar, θ = 90◦, under the influ-
ence of spin-orbit coupling, λ �= 0, behaves like a tilted texture
{m̃i} in a system without spin-orbit coupling, λ̃ = 0, thereby
explaining the emergence of the anomalous Hall effect in
the coplanar system. Likewise, a texture {mi} with a critical
azimuthal angle θc = 90◦ + �θc with spin-orbit coupling,
λ �= 0, behaves like a texture {m̃i} that is coplanar, θ = 90◦, in

a system without spin-orbit coupling, λ̃ = 0, explaining why
the Hall conductivity vanishes for θ = 103◦ in Fig. 3(g). In a
similar way, this explains why the configuration characterized
by θ = 13◦ in Fig. 3(i) behaves like a ferromagnetic configu-
ration, while the actual ferromagnetic configuration does not:
The azimuthal angle of the virtual textures is reduced by 13◦.

The two special configurations for θ = �θc = 13◦ and
θ = θc = �θc + 90◦ = 103◦ restore the TM symmetry of the
Hamiltonian that we initially discussed in the coplanar sys-
tem without spin-orbit coupling. This symmetry leads to the
closing of Dirac points and to the absence of the Hall conduc-
tivity for these particular configurations since it renders the
reciprocal-space Berry curvature antisymmetric �(z)

n (−k) =
−�(z)

n (k). On the other hand, for a coplanar fixed magnetic
texture (θ = 90◦) the virtual texture is tilted by −�θc. This
virtual texture has a net magnetization and a scalar spin
chirality and therefore gives rise to anomalous and topological
Hall effects which are allowed by the breaking of the TM
symmetry.

F. Effective topological Hall effect

Next, we want to show which mechanism of the virtually
tilted texture is more relevant: a virtual anomalous Hall effect
caused by the net moment of the virtual texture or a virtual
topological Hall effect caused by the scalar spin chirality of
the virtual texture.

To differentiate the calculated signal into anomalous and
topological Hall effects, in the following, we compare the
θ dependence of the Hall conductivity of the radial-type
magnetic texture with the toroidal phase and a collinear
phase, as presented in Fig. 4. Without spin-orbit coupling, the
toroidal spin texture behaves equally to the radial-type texture,
since both exhibit a purely topological Hall effect, that is
proportional to the scalar spin chirality, which is independent
of �� [given in Eq. (5)]. The collinear configuration does not
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FIG. 5. Results for the phase of negative vector spin chirality, κ = −1 and �� = 180◦. This is the texture that has been experimentally
investigated in Mn3Ge [17]. (a)–(e) show the results without spin-orbit coupling. (a) The band structure, (b) the energy-resolved conductivity
for the coplanar (θ = 90◦) texture, (c) the Hall conductivity for different constant Fermi energies [colors as indicated in (a), (b)] in dependence
on the azimuthal angle θ . (d) shows a magnification of (c) near θ = 90◦. (e) The spin texture of the energetically lowest band for θ = 90◦.
(f)–(j) show the same quantities when the spin-orbit interaction λ = 0.2t is taken into account. Similarly to the result of the radial phase (as
extensively presented in the paper), the virtual texture {m̃i}, determined by the Hamiltonian, is tilted due to the spin-orbit coupling. This also
affects the reciprocal-space spin texture shown in (j).

exhibit a finite signal since the scalar spin chirality is always
zero.

When spin-orbit coupling is taken into account, the anoma-
lous Hall effect is also present. Conventionally, it is pro-
portional to the out-of-plane magnetization cos θ which is
observable for the collinear configuration in panel (a), that
exhibits a pure anomalous Hall effect. For the toroidal texture
(b) the signal is symmetric with respect to θ = 90◦. The topo-
logical Hall effect and the (considerably smaller) anomalous
Hall effect are present. In panel (c) the radial configuration is
shown as discussed above. In addition to these two effects, a
shift in θ is observable which characterizes the nature of this
“new” effect as explained above.

Since the topological Hall effect in these calculations is
significantly larger than the anomalous Hall effect (largest for
θ = 0◦, 180◦), the “new” contribution to the Hall effect in
kagome magnets can be understood mainly as a topological
Hall effect caused by a virtually tilted texture.

G. Phase of negative vector spin chirality

Coming back to the experiments in Mn3Sn [16] and
Mn3Ge [17] where this “new” anomalous Hall effect has been
measured recently, we have also investigated the phase of
negative vector spin chirality, κ = −1. The results are shown
in Fig. 5. In these materials the calculated Hall conductivity is
smaller compared to the phase of positive chirality but it is still
considerable. The general statements from above hold also in
this system: For a coplanar configuration, the spin expectation
value is tilted out of the plane [cf. Fig. 5(j)] which can be
related to the emergence of the Hall effect [cf. Fig. 5(g)].
Also, there exists a tilted virtual texture {mi} that determines
the transport properties and a critical compensation angle θc

which is smaller here compared to the κ = +1 system [θc ≈
90.15◦ for λ = 0.2t as visible in Fig. 5(i)].

H. Comparison to the literature and validity of the model

Before we conclude, we want to discuss a few details
that are important to realize in order to understand that our
established mechanism is indeed the origin of the anomalous
Hall effect in kagome magnets.

In the introduction we have mentioned several publications
that report an anomalous Hall effect in kagome systems theo-
retically and experimentally. While these systems are mostly
considered to be coplanar, actually, a small out-of-plane mo-
ment is calculated [14,30] or measured [16,17] (more than two
orders of magnitude smaller than the actual magnetic moment
of Mn). However, in these publications it is argued correctly
that this moment is too small to explain the emergence of the
calculated and measured anomalous Hall effect. In one of the
first-principles calculations in Ref. [14] the system has even
been artificially fixed in the perfectly coplanar configuration.
As a consequence, the Hall conductivity only changed from
σxy = 218 �−1 cm−1 to σxy = 217 �−1 cm−1 and not to zero
which rules out the possibility to explain the Hall effect by
means of an anomalous or topological Hall effect based on
the actual magnetic texture. This means that an alternative
mechanism must be present, which we have revealed in our
paper.

In the study by Chen et al. [14] also a first investigation of
the influence of an out-of-plane tilting of the texture on the
Hall effect has been given by means of first-principles calcu-
lations. While they only calculated a few angles, it seems like
the anomalous Hall effect is zero for several configurations. It
would be interesting to have a more detailed curve and also the
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energy dependence to compare it to our results. The existence
of several zeros could be attributed to a (random) compen-
sation of the electron and hole carrier densities but could
also stem from the existence of carriers of different orbital
character. In this case, the hopping amplitude t would differ
between the carriers and electrons with different orbital char-
acter would experience different virtual tilting angles. This
would imply that different locations of the Fermi energy (e.g.,
changed via doping or gating) would result in different virtual
textures since the ratio of the carrier densities of electrons
with different orbital characters changes. Furthermore, if the
hopping amplitudes have different signs, even a compensation
of the virtual tilting can occur resulting in additional zeros in
the Hall conductivity. In the present model (as established in
Refs. [14,18,26,28]) only a subspace of the total Hamiltonian
is considered, which is why the virtual tilting angle is indepen-
dent of the Fermi energy and only two zero transitions at �θc

and θc = 90◦ + �θc occur.
Finally, we want to address an apparent invalidity of the

model considered in Refs. [14,18,26,28]. This model (that
we also consider in the present paper for θ = 90◦) aims
at discussing the anomalous Hall effect upon considering a
coplanar magnetic texture. However, if we recall the results
from the coplanar radial fixed magnetic texture (Fig. 2), we
have found that while the fixed magnetic texture {mi} exhibits
no net moment, the reciprocal-space spin texture 〈s(k)〉 of
the conduction electrons does. This would mean that the total
magnetic moment is finite and that a magnetization would be
measured. This puts the purpose of the considered model in
these publications in question: The aim of these publications
was to show that an anomalous Hall effect emerges in a
compensated system. However, for θ = 90◦, this tight-binding
model does not actually consider a vanishing net magnetiza-
tion (taking into account both the fixed magnetic texture and
the k-dependent conduction electron spin texture) which is
why the results of these publications do not actually serve their
purpose, since one could argue that the finite Hall conductivity
is not surprising even by conventional means.

However, as we show, for every tilted configuration, except
for θ = θc, the Hall signal is nonzero which means that one
can construct configurations for which the net moment of
the fixed texture is compensated by the spin texture and still
the Hall response is finite. In other words, a tweaked version
of the model can sufficiently describe the completely com-
pensated situation in which the net magnetization is absent.
The fixed texture has to be considered with a small out-
of-plane component θ �= 90◦ but different from the critical
angle θ �= θc.

IV. CONCLUSION

In summary, we have revealed microscopically how
the anomalous Hall effect arises in kagome magnets like
Mn3X (N). The Hamiltonian describes a virtual texture that
determines the Hall conductivity instead of the actually mea-
surable texture. For the coplanar radial-type arrangement, this
texture is tilted out-of-plane due to the spin-orbit coupling.
The virtual texture is characterized by a net moment and a
net scalar spin chirality which give rise to a “virtual” anoma-
lous and a “virtual” topological Hall effect, respectively. Our

explanation is in agreement with the recent experimental
findings in Mn3Sn [16] and Mn3Ge [17].

Our results go beyond conventional symmetry analyses and
show precisely if and how certain symmetries are broken by
the texture and the spin-orbit coupling. Especially insightful
is our result for a noncoplanar system characterized by the
critical azimuthal angle θ = θc [Fig. 3(f)]. The virtual tilting
due to the spin-orbit coupling leads to a coplanar virtual
texture. Consequently, the Hall signal is absent for this critical
configuration. While a magnetic point group analysis would
tell that the Hall signal is allowed, our established micro-
scopic mechanism allows us to understand the absence due
to a preserved TM symmetry of the virtual texture and the
Hamiltonian of the here considered model.

As discussed, our model considers only a single orbital per
lattice site, while the full system is characterized by electrons
with different orbital character. In this case, due to the differ-
ent hopping amplitudes [cf. Eq. (9)], different carriers cause
different tilting angles of the (now orbital-dependent) virtual
texture, which even allows for a compensation. This may
explain why in kagome materials with a positive vector spin
chirality (like Mn3Rh, Mn3Ir, Mn3Pt) no such Hall effect has
been measured yet, even though it is allowed by conventional
symmetry analyses and was predicted more than 6 years ago.
Tuning the Fermi energy by gating or doping can change the
ratio of different carriers and may allow us to tune the Hall
effect in these materials.
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APPENDIX: TRANSFORMATION: EQUIVALENCE OF
SPIN-ORBIT COUPLING AND A TILTED MAGNETIC

TEXTURE

In the main text we have claimed that the spin-orbit cou-
pling term behaves like a virtual tilting of the magnetic texture
out of the kagome plane. In the following we derive this
equivalence explicitly.

We start from the full Hamiltonian that includes hopping,
Hund’s coupling, and spin-orbit coupling terms. Now we
apply a transformation

U †
i =

(
cos

(
α
2

)
sin

(
α
2

)
e−i�i

− sin
(

α
2

)
ei�i cos

(
α
2

)
)

(A1)

that is unitary,

U †
i Ui = 1. (A2)

This transformation reorients the coordinate system for the
magnetic moments of the fixed texture at every lattice site.
Instead of aligning the z axis with the local moment, as has
been done in Refs. [31–33], we tilt the z axis (now labeled
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FIG. 6. Local rotation of the coordinate system as unitary trans-
formation. The dashed coordinate system at each lattice cite i, j, k
is rotated about the same angle α in the plane spanned by z and
the local magnetic moment mi, m j, mk , respectively. The z axes of
the reoriented, site-dependent coordinate systems are visualized by
the solid arrows z̃i, z̃ j, z̃k . In these coordinate systems the magnetic
moments are characterized by a different azimuthal angle θ − α; i.e.,
the texture is virtually tilted.

z̃) by an angle α toward the magnetic moment, as shown in
Fig. 6,

z̃i = (cos �i sin α, sin �i sin α, cos α)T. (A3)

Here �i is the polar angle of the fixed moment mi at site i.
The electron operator ci is transformed to the new operator

di as

ci = Uidi. (A4)

First, we analyze how the Hund’s coupling term transforms,

c†
i (mi · σ)ci = d†

i U †
i (mi · σ)Uidi, (A5)

U †
i (mi · σ )Ui =

(
cos(θ − α) sin(θ − α)e−i�i

sin(θ − α)ei�i − cos(θ − α)

)
. (A6)

As expected by geometric considerations, the azimuthal angle
of the magnetic moment in this new coordinate system is
decreased by α and the polar angle remains the same. Due
to the application of the transformation, the spin is measured
differently; the magnetic texture effectively acts as a new
texture {m̃i}:

c†
i (mi · σ)ci = d†

i (m̃i · σ )di, (A7)

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i ) sin(θ − α)
cos(θ − α)

⎞
⎠. (A8)

Of course, the unitary transformation has to be applied also
to the other two terms to leave the physics of the system
unchanged. Therefore, the effect of this new, tilted texture
has to be compensated by the other terms in the Hamiltonian.
Next, we transform the hopping term:

t c†
i c j = t d†

i U †
i Ujd j = t U †

i Uj d†
i d j, (A9)

U †
i Uj =

(
cos2

(
α
2

) + sin2
(

α
2

)
e−i(�i−� j ) 1

2 sin (α)
(
e−i�i − e−i� j

)
− 1

2 sin (α)
(
ei�i − ei� j

)
cos2

(
α
2

) + sin2
(

α
2

)
ei(�i−� j )

)
. (A10)

The diagonal terms describe a hopping with a scaled hopping
amplitude t eff

i j . This hopping has a complex phase which is
opposite for spin-up and spin-down (in this basis) electrons.
For a small α, the effective hopping converges to t .

The off-diagonal terms have the shape of the spin-orbit
coupling. For the radial texture they can be simplified to

−i

√
3

2
sin(α)ni j · σ. (A11)

Lastly, we transform the original spin-orbit coupling term.
Again, the result is a matrix with effective hooping terms on
the diagonal and effective spin-orbit coupling terms on the
off-diagonal:

c†
i (	ni j · 	σ )c j = d†

i U †
i (	ni j · 	σ )Ujd j (A12)

U †
i (ni j · σ )Uj = cos(α)ni j · σ + sin(α)

×
(

e−i 1
2 (�i−� j ) 0

0 −ei 1
2 (�i−� j )

)
. (A13)

Summarizing the transformation, the Hamiltonian

H = t
∑
〈i, j〉

c†
i c j + m

∑
i

c†
i (mi · σ)ci

+ iλ
∑
〈i, j〉

c†
i (ni j · σ)c j (A14)

has been transformed to

H =
∑
〈i, j〉

t eff
i j d†

i d j + m
∑

i

d†
i (m̃i · σ )di

+ iλ̃
∑
〈i, j〉

d†
i (ni j · σ )d j, (A15)

with

t eff↑↓
i j = t

[
cos2

(α

2

)
+ sin2

(α

2

)
e∓i(�i−� j )

]
±iλ e∓i 1

2 (�i−� j ) sin(α), (A16)

λ̃ = −
√

3

2
sin(α)t + cos(α)λ, (A17)
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m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i) sin(θ − α)
cos(θ − α)

⎞
⎠. (A18)

This means that a tilting of the texture is equivalent to the
emergence of an effective spin-orbit coupling and a modified
hopping amplitude, and vice versa. At a critical tilting angle
αc the spin-orbit coupling is compensated,

0
!= λ̃ = −

√
3

2
sin(αc)t + cos(αc)λ. (A19)

This means that gauging away the spin-orbit coupling is
equivalent to tilting the virtual texture by −αc. Therefore, a
critical angle �θc = +αc of the actual texture compensates
this tilt and leads to a coplanar virtual texture that does not
exhibit a Hall effect,

�θc = αc = arctan
λ

t
√

3/2
. (A20)

For a general κ = +1 configuration, the angle is given by

�θc = αc = arctan

[
λ

t
√

3/2
cos(��)

]
. (A21)
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