Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles

Abstract

Magnetic skyrmions have attracted enormous research interest since their discovery a decade ago. The non-trivial real-space topology of these nano-whirls leads to fundamentally interesting and technologically relevant consequences — the skyrmion Hall effect of the texture and the topological Hall effect of the electrons. Furthermore, it grants skyrmions in a ferromagnetic surrounding great stability even at small sizes, making skyrmions aspirants to become the carriers of information in the future. Still, the utilization of skyrmions in spintronic devices has not been achieved yet, among other reasons, due to shortcomings in their current-driven motion. In this review, we present recent trends in the field of topological spin textures that go beyond skyrmions. The majority of these objects can be considered a combination of multiple subparticles, such as the bimeron, or the skyrmion analogues in different magnetic surroundings, such as antiferromagnetic skyrmions, as well as three-dimensional generalizations, such as hopfions. We classify the alternative magnetic quasiparticles – some of them observed experimentally, others theoretical predictions – and present the most relevant and auspicious advantages of this emerging field

    Similar works